TY - JOUR
T1 - Modulation of PPAR activity via phosphorylation
AU - Burns, Katherine A.
AU - Vanden Heuvel, John P.
N1 - Funding Information:
Funded by NIH ES007799 (J.V.H.) and a Bristol Myers Squibb fellowship (K.A.B.).
PY - 2007/8
Y1 - 2007/8
N2 - Peroxisome proliferator-activated receptors (PPARs) are members of the nuclear receptor superfamily of transcription factors that respond to specific ligands by altering gene expression in a cell-, developmental- and sex-specific manner. Three subtypes of this receptor have been discovered (PPARα, β and γ), each apparently evolving to fulfill different biological niches. PPARs control a variety of target genes involved in lipid homeostasis, diabetes and cancer. Similar to other nuclear receptors, the PPARs are phosphoproteins and their transcriptional activity is affected by cross-talk with kinases and phosphatases. Phosphorylation by the mitogen-activated protein kinases (ERK- and p38-MAPK), Protein Kinase A and C (PKA, PKC), AMP Kinase (AMPK) and glycogen synthase kinase-3 (GSK3) affect their activity in a ligand-dependent or -independent manner. The effects of phosphorylation depend on the cellular context, receptor subtype and residue metabolized which can be manifested at several steps in the PPAR activation sequence including ligand affinity, DNA binding, coactivator recruitment and proteasomal degradation. The review will summarize the known PPAR kinases that directly act on these receptors, the sites affected and the result of this modification on receptor activity.
AB - Peroxisome proliferator-activated receptors (PPARs) are members of the nuclear receptor superfamily of transcription factors that respond to specific ligands by altering gene expression in a cell-, developmental- and sex-specific manner. Three subtypes of this receptor have been discovered (PPARα, β and γ), each apparently evolving to fulfill different biological niches. PPARs control a variety of target genes involved in lipid homeostasis, diabetes and cancer. Similar to other nuclear receptors, the PPARs are phosphoproteins and their transcriptional activity is affected by cross-talk with kinases and phosphatases. Phosphorylation by the mitogen-activated protein kinases (ERK- and p38-MAPK), Protein Kinase A and C (PKA, PKC), AMP Kinase (AMPK) and glycogen synthase kinase-3 (GSK3) affect their activity in a ligand-dependent or -independent manner. The effects of phosphorylation depend on the cellular context, receptor subtype and residue metabolized which can be manifested at several steps in the PPAR activation sequence including ligand affinity, DNA binding, coactivator recruitment and proteasomal degradation. The review will summarize the known PPAR kinases that directly act on these receptors, the sites affected and the result of this modification on receptor activity.
UR - http://www.scopus.com/inward/record.url?scp=34547589477&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=34547589477&partnerID=8YFLogxK
U2 - 10.1016/j.bbalip.2007.04.018
DO - 10.1016/j.bbalip.2007.04.018
M3 - Review article
C2 - 17560826
AN - SCOPUS:34547589477
SN - 1388-1981
VL - 1771
SP - 952
EP - 960
JO - Biochimica et Biophysica Acta - Molecular and Cell Biology of Lipids
JF - Biochimica et Biophysica Acta - Molecular and Cell Biology of Lipids
IS - 8
ER -