Modulation of voltage-gated Ca2+ channels by G protein-coupled receptors in celiac-mesenteric ganglion neurons of septic rats

Research output: Contribution to journalArticlepeer-review

3 Scopus citations


Septic shock, the most severe complication associated with sepsis, is manifested by tissue hypoperfusion due, in part, to cardiovascular and autonomic dysfunction. In many cases, the splanchnic circulation becomes vasoplegic. The celiac-superior mesenteric ganglion (CSMG) sympathetic neurons provide the main autonomic input to these vessels. We used the cecal ligation puncture (CLP) model, which closely mimics the hemodynamic and metabolic disturbances observed in septic patients, to examine the properties and modulation of Ca2+ channels by G protein-coupled receptors in acutely dissociated rat CSMG neurons. Voltage-clamp studies 48 hr post-sepsis revealed that the Ca2+ current density in CMSG neurons from septic rats was significantly lower than those isolated from sham control rats. This reduction coincided with a significant increase in membrane surface area and a negligible increase in Ca2+ current amplitude. Possible explanations for these findings include either cell swelling or neurite outgrowth enhancement of CSMG neurons from septic rats. Additionally, a significant rightward shift of the concentration-response relationship for the norepinephrine (NE)-mediated Ca2+ current inhibition was observed in CSMG neurons from septic rats. Testing for the presence of opioid receptor subtypes in CSMG neurons, showed that mu opioid receptors were present in ~70% of CSMG, while NOP opioid receptors were found in all CSMG neurons tested. The pharmacological profile for both opioid receptor subtypes was not significantly affected by sepsis. Further, the Ca2+ current modulation by propionate, an agonist for the free fatty acid receptors GPR41 and GPR43, was not altered by sepsis. Overall, our findings suggest that CSMG function is affected by sepsis via changes in cell size and α2-adrenergic receptor-mediated Ca2+ channel modulation.

Original languageEnglish (US)
Article numbere0125566
JournalPloS one
Issue number5
StatePublished - May 1 2015

All Science Journal Classification (ASJC) codes

  • General Biochemistry, Genetics and Molecular Biology
  • General Agricultural and Biological Sciences
  • General


Dive into the research topics of 'Modulation of voltage-gated Ca2+ channels by G protein-coupled receptors in celiac-mesenteric ganglion neurons of septic rats'. Together they form a unique fingerprint.

Cite this