TY - JOUR
T1 - Molality as a unit of measure for expressing 1H MRS brain metabolite concentrations in vivo
AU - Knight-Scott, Jack
AU - Haley, Andreana P.
AU - Rossmiller, Sarah R.
AU - Farace, Elana
AU - Mai, Vu M.
AU - Christopher, John M.
AU - Manning, Carol A.
AU - Simnad, Virginia I.
AU - Siragy, Helmy M.
N1 - Funding Information:
This work was supported by a grant from the National Institutes of Health to the University of Virginia General Clinical Research Center, M01RR00847, the American Federation for Aging Research (A.P.H.), the University of Virginia Retired Faculty Association (A.P.H.), and a donation of research time on the MRI system from the University of Virginia Departments of Neurology and Neurosurgery (C.A.M., E.F., J.K-S.). We also thank Ms. Kitter Bishop for editing this manuscript.
PY - 2003/9
Y1 - 2003/9
N2 - Absolute concentrations of cerebral metabolite in in vivo 1H magnetic resonance spectroscopy studies (1H-MRS) are widely reported in molar units as moles per liter of tissue, or in molal units as moles per kilogram of tissue. Such measurements require external referencing or assumptions as to local water content. To reduce the scan time, avoid assumptions that may be invalid under specific pathologies, and provide a universally accessible referencing procedure, we suggest that metabolite concentrations from 1H-MRS measurements in vivo be reported in molal units as moles per kilogram of tissue water. Using internal water referencing, a two-compartment water model, a simulated brain spectrum for peak identification, and a spectroscopic bi-exponential spin-spin relaxation segmentation technique, we measured the absolute concentrations for the four common 1H brain metabolites: choline (Cho), myo-inositol (mIno), phosphocreatine + creatine (Cr), and N-acetyl-aspartate (NAA), in the hippocampal region (n = 26) and along the Sylvian fissure (n = 61) of 35 healthy adults. A stimulated echo localization method (20 ms echo time, 10 ms mixing time, 4 s repetition time) yielded metabolite concentrations, uncorrected for metabolite relaxation or contributions from macromolecule resonances, that were expectantly higher than with molar literature values. Along the Sylvian fissure the average concentrations (coefficient of variation (CV)) in mmoles/kg of tissue water were 17.6 (12%) for NAA, 14.2 (9%) for Cr, 3.6 (13%) for Cho, and 13.2 (15%) for mIno. Respective values for the hippocampal region were 15.7 (20%), 14.7 (16%), 4.6 (19%), and 17.7 (26%). The concentrations of the two regions were significantly different (p ≤ 0.001) for NAA, mIno, and Cho, a trend in agreement with previous studies. All gray matter Sylvian fissure CV values, except for NAA, were also in agreement with previous 1H-MRS gray matter studies. The reduced precision of the NAA concentration was attributed to overlapping signal contributions from glutamate and glutamine (Glx), suggesting that a detailed Glx model is critical for accurate quantitation of the NAA 2.02 ppm resonance. The reduced precision of the measurements in the hippocampal region was attributed to poor spectral resolution.
AB - Absolute concentrations of cerebral metabolite in in vivo 1H magnetic resonance spectroscopy studies (1H-MRS) are widely reported in molar units as moles per liter of tissue, or in molal units as moles per kilogram of tissue. Such measurements require external referencing or assumptions as to local water content. To reduce the scan time, avoid assumptions that may be invalid under specific pathologies, and provide a universally accessible referencing procedure, we suggest that metabolite concentrations from 1H-MRS measurements in vivo be reported in molal units as moles per kilogram of tissue water. Using internal water referencing, a two-compartment water model, a simulated brain spectrum for peak identification, and a spectroscopic bi-exponential spin-spin relaxation segmentation technique, we measured the absolute concentrations for the four common 1H brain metabolites: choline (Cho), myo-inositol (mIno), phosphocreatine + creatine (Cr), and N-acetyl-aspartate (NAA), in the hippocampal region (n = 26) and along the Sylvian fissure (n = 61) of 35 healthy adults. A stimulated echo localization method (20 ms echo time, 10 ms mixing time, 4 s repetition time) yielded metabolite concentrations, uncorrected for metabolite relaxation or contributions from macromolecule resonances, that were expectantly higher than with molar literature values. Along the Sylvian fissure the average concentrations (coefficient of variation (CV)) in mmoles/kg of tissue water were 17.6 (12%) for NAA, 14.2 (9%) for Cr, 3.6 (13%) for Cho, and 13.2 (15%) for mIno. Respective values for the hippocampal region were 15.7 (20%), 14.7 (16%), 4.6 (19%), and 17.7 (26%). The concentrations of the two regions were significantly different (p ≤ 0.001) for NAA, mIno, and Cho, a trend in agreement with previous studies. All gray matter Sylvian fissure CV values, except for NAA, were also in agreement with previous 1H-MRS gray matter studies. The reduced precision of the NAA concentration was attributed to overlapping signal contributions from glutamate and glutamine (Glx), suggesting that a detailed Glx model is critical for accurate quantitation of the NAA 2.02 ppm resonance. The reduced precision of the measurements in the hippocampal region was attributed to poor spectral resolution.
UR - http://www.scopus.com/inward/record.url?scp=0141923644&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0141923644&partnerID=8YFLogxK
U2 - 10.1016/S0730-725X(03)00179-6
DO - 10.1016/S0730-725X(03)00179-6
M3 - Article
C2 - 14559344
AN - SCOPUS:0141923644
SN - 0730-725X
VL - 21
SP - 787
EP - 797
JO - Magnetic Resonance Imaging
JF - Magnetic Resonance Imaging
IS - 7
ER -