Molecular and social regulation of worker division of labour in fire ants

Fabio Manfredini, Christophe Lucas, Michael Nicolas, Laurent Keller, Dewayne Shoemaker, Christina M. Grozinger

Research output: Contribution to journalArticlepeer-review

40 Scopus citations

Abstract

Reproductive and worker division of labour (DOL) is a hallmark of social insect societies. Despite a long-standing interest in worker DOL, the molecular mechanisms regulating this process have only been investigated in detail in honey bees, and little is known about the regulatory mechanisms operating in other social insects. In the fire ant Solenopsis invicta, one of the most studied ant species, workers are permanently sterile and the tasks performed are modulated by the worker's internal state (age and size) and the outside environment (social environment), which potentially includes the effect of the queen presence through chemical communication via pheromones. However, the molecular mechanisms underpinning these processes are unknown. Using a whole-genome microarray platform, we characterized the molecular basis for worker DOL and we explored how a drastic change in the social environment (i.e. the sudden loss of the queen) affects global gene expression patterns of worker ants. We identified numerous genes differentially expressed between foraging and nonforaging workers in queenright colonies. With a few exceptions, these genes appear to be distinct from those involved in DOL in bees and wasps. Interestingly, after the queen was removed, foraging workers were no longer distinct from nonforaging workers at the transcriptomic level. Furthermore, few expression differences were detected between queenright and queenless workers when we did not consider the task performed. Thus, the social condition of the colony (queenless vs. queenright) appears to impact the molecular pathways underlying worker task performance, providing strong evidence for social regulation of DOL in S. invicta.

Original languageEnglish (US)
Pages (from-to)660-672
Number of pages13
JournalMolecular ecology
Volume23
Issue number3
DOIs
StatePublished - Feb 2014

All Science Journal Classification (ASJC) codes

  • Ecology, Evolution, Behavior and Systematics
  • Genetics

Fingerprint

Dive into the research topics of 'Molecular and social regulation of worker division of labour in fire ants'. Together they form a unique fingerprint.

Cite this