Molecular Dynamics Modeling of Interfacial Interactions between Flattened Carbon Nanotubes and Amorphous Carbon: Implications for Ultra-Lightweight Composites

Prashik S. Gaikwad, Margaret Kowalik, Benjamin D. Jensen, Adri Van Duin, Gregory M. Odegard

Research output: Contribution to journalArticlepeer-review

8 Scopus citations

Abstract

Flattened carbon nanotubes (flCNTs) naturally form in many carbon nanotube-based materials and can exhibit mechanical properties similar to round carbon nanotubes but with tighter packing and alignment. To facilitate the design, fabrication, and testing of flCNT-based composites for aerospace structures, computational modeling can be used to efficiently and accurately predict their performance as a function of processing parameters, such as reinforcement/matrix cross-linking. In this study, molecular dynamics modeling is used to predict the load transfer characteristics of the interface region between the flat region of flCNTs (i.e., bi-layer graphene) and amorphous carbon (AC) with various levels and locations of covalent bond cross-linking and AC mass density. The results of this study show that increasing the mass density of AC at the interface improves the load transfer capability of the interface. However, a much larger improvement is observed when cross-linking is added both to the flCNT-AC interface and between the flCNT sheets. With both types of cross-linking, substantial improvements in interfacial shear strength, transverse tension strength, and transverse tension toughness are predicted. The results of this study are important for optimizing the processing of flCNT/AC composites for demanding engineering applications.

Original languageEnglish (US)
Pages (from-to)5915-5924
Number of pages10
JournalACS Applied Nano Materials
Volume5
Issue number4
DOIs
StatePublished - Apr 22 2022

All Science Journal Classification (ASJC) codes

  • General Materials Science

Fingerprint

Dive into the research topics of 'Molecular Dynamics Modeling of Interfacial Interactions between Flattened Carbon Nanotubes and Amorphous Carbon: Implications for Ultra-Lightweight Composites'. Together they form a unique fingerprint.

Cite this