Abstract
The vibrational energy distribution and the degree of dissociation within a system of hydrogen or oxygen molecules was modeled using molecular dynamics (MD). The first step in this process was to model the atomic and molecular interactions. Since hydrogen and oxygen form diatomic molecules, vibration is the only imramolecular force that must be computed. The Morse potential is used to perform this calculation. Atomic interactions outside the molecule are modeled using the Lennard-Jones potential. The vibrational energy level distribution of this model demonstrated excellent agreement with the Boltzmann distribution. In this molecular dynamics simulation, dissociation occurs when the potential energy between two vibrating atoms exceeds a critical value. Recombination is also possible between two previously dissociated atoms by the reverse mechanism. This process enables a system to start in a state of molecules and proceed to an equilibrated state of atoms and molecules. The molecular dynamics simulation accurately modeled both the rate of dissociation and the ratio of species at equilibrium. This investigation demonstrated that simple chemical reactions in relatively large systems can be modeled using molecular dynamics.
Original language | English (US) |
---|---|
State | Published - 2000 |
Event | 38th Aerospace Sciences Meeting and Exhibit 2000 - Reno, NV, United States Duration: Jan 10 2000 → Jan 13 2000 |
Other
Other | 38th Aerospace Sciences Meeting and Exhibit 2000 |
---|---|
Country/Territory | United States |
City | Reno, NV |
Period | 1/10/00 → 1/13/00 |
All Science Journal Classification (ASJC) codes
- Space and Planetary Science
- Aerospace Engineering