TY - JOUR
T1 - Molecular dynamics simulations of β-hairpin folding
AU - Wang, Hongwu
AU - Varady, Judith
AU - Ng, Lily
AU - Sung, Shen Shu
PY - 1999/11/15
Y1 - 1999/11/15
N2 - Molecular dynamics simulations of β-hairpin folding have been carried out with a solvent-referenced potential at 274 K. The model peptide V4(D)PGV4 formed stable β-hairpin conformations and the β-hairpin ratio calculated by the DSSP algorithm was about 56% in the 50-ns simulation. Folding into β-hairpin conformations is independent of the initial conformations. The simulations provided insights into the folding mechanism. The hydrogen bond often formed in a β-turn first, and then propagated by forming more hydrogen bonds along the strands. Unfolding and refolding occurred repeatedly during the simulations. Both the hydrogen bonding and the hydrophobic interaction played important roles in forming the ordered structure. Without the hydrophobic effect, stable β-hairpin conformations did not form in the simulations. With the same energy functions, the alanine- based peptide (AAQAA)3Y folded into helical conformations, in agreement with experiments. Folding into an α-helix or a β-hairpin is amino acid sequence- dependent.
AB - Molecular dynamics simulations of β-hairpin folding have been carried out with a solvent-referenced potential at 274 K. The model peptide V4(D)PGV4 formed stable β-hairpin conformations and the β-hairpin ratio calculated by the DSSP algorithm was about 56% in the 50-ns simulation. Folding into β-hairpin conformations is independent of the initial conformations. The simulations provided insights into the folding mechanism. The hydrogen bond often formed in a β-turn first, and then propagated by forming more hydrogen bonds along the strands. Unfolding and refolding occurred repeatedly during the simulations. Both the hydrogen bonding and the hydrophobic interaction played important roles in forming the ordered structure. Without the hydrophobic effect, stable β-hairpin conformations did not form in the simulations. With the same energy functions, the alanine- based peptide (AAQAA)3Y folded into helical conformations, in agreement with experiments. Folding into an α-helix or a β-hairpin is amino acid sequence- dependent.
UR - http://www.scopus.com/inward/record.url?scp=0032735468&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0032735468&partnerID=8YFLogxK
U2 - 10.1002/(SICI)1097-0134(19991115)37:3<325::AID-PROT2>3.0.CO;2-E
DO - 10.1002/(SICI)1097-0134(19991115)37:3<325::AID-PROT2>3.0.CO;2-E
M3 - Article
C2 - 10591094
AN - SCOPUS:0032735468
SN - 0887-3585
VL - 37
SP - 325
EP - 333
JO - Proteins: Structure, Function and Genetics
JF - Proteins: Structure, Function and Genetics
IS - 3
ER -