TY - JOUR
T1 - Molecular signature of hypersaline adaptation
T2 - Insights from genome and proteome composition of halophilic prokaryotes
AU - Paul, Sandip
AU - Bag, Sumit K.
AU - Das, Sabyasachi
AU - Harvill, Eric T.
AU - Dutta, Chitra
N1 - Funding Information:
We are grateful to Anirban Dutta, IICB for critical reading of the manuscript and Sanjib Chatterjee, IICB for giving technical support for calculating dinucleotide abundance. We are also grateful to anonymous reviewers for their thoughtful suggestions. This work was supported by the Department of Biotechnology, Government of India (Grant Number BT/BI/04/055-2001) and Council of Scientific and Industrial Research (Project no. CMM 0017).
PY - 2008/4/9
Y1 - 2008/4/9
N2 - Background: Halophilic prokaryotes are adapted to thrive in extreme conditions of salinity. Identification and analysis of distinct macromolecular characteristics of halophiles provide insight into the factors responsible for their adaptation to high-salt environments. The current report presents an extensive and systematic comparative analysis of genome and proteome composition of halophilic and non-halophilic microorganisms, with a view to identify such macromolecular signatures of haloadaptation. Results: Comparative analysis of the genomes and proteomes of halophiles and non-halophiles reveals some common trends in halophiles that transcend the boundary of phylogenetic relationship and the genomic GC-content of the species. At the protein level, halophilic species are characterized by low hydrophobicity, over-representation of acidic residues, especially Asp, under-representation of Cys, lower propensities for helix formation and higher propensities for coil structure. At the DNA level, the dinucleotide abundance profiles of halophilic genomes bear some common characteristics, which are quite distinct from those of non-halophiles, and hence may be regarded as specific genomic signatures for salt-adaptation. The synonymous codon usage in halophiles also exhibits similar patterns regardless of their long-term evolutionary history. Conclusion: The generality of molecular signatures for environmental adaptation of extreme salt-loving organisms, demonstrated in the present study, advocates the convergent evolution of halophilic species towards specific genome and amino acid composition, irrespective of their varying GC-bias and widely disparate taxonomic positions. The adapted features of halophiles seem to be related to physical principles governing DNA and protein stability, in response to the extreme environmental conditions under which they thrive.
AB - Background: Halophilic prokaryotes are adapted to thrive in extreme conditions of salinity. Identification and analysis of distinct macromolecular characteristics of halophiles provide insight into the factors responsible for their adaptation to high-salt environments. The current report presents an extensive and systematic comparative analysis of genome and proteome composition of halophilic and non-halophilic microorganisms, with a view to identify such macromolecular signatures of haloadaptation. Results: Comparative analysis of the genomes and proteomes of halophiles and non-halophiles reveals some common trends in halophiles that transcend the boundary of phylogenetic relationship and the genomic GC-content of the species. At the protein level, halophilic species are characterized by low hydrophobicity, over-representation of acidic residues, especially Asp, under-representation of Cys, lower propensities for helix formation and higher propensities for coil structure. At the DNA level, the dinucleotide abundance profiles of halophilic genomes bear some common characteristics, which are quite distinct from those of non-halophiles, and hence may be regarded as specific genomic signatures for salt-adaptation. The synonymous codon usage in halophiles also exhibits similar patterns regardless of their long-term evolutionary history. Conclusion: The generality of molecular signatures for environmental adaptation of extreme salt-loving organisms, demonstrated in the present study, advocates the convergent evolution of halophilic species towards specific genome and amino acid composition, irrespective of their varying GC-bias and widely disparate taxonomic positions. The adapted features of halophiles seem to be related to physical principles governing DNA and protein stability, in response to the extreme environmental conditions under which they thrive.
UR - http://www.scopus.com/inward/record.url?scp=47149088683&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=47149088683&partnerID=8YFLogxK
U2 - 10.1186/gb-2008-9-4-r70
DO - 10.1186/gb-2008-9-4-r70
M3 - Article
C2 - 18397532
AN - SCOPUS:47149088683
SN - 1474-7596
VL - 9
JO - Genome biology
JF - Genome biology
IS - 4
M1 - R70
ER -