Molecular Storage of Mg Ions with Vanadium Oxide Nanoclusters

Yingwen Cheng, Yuyan Shao, Vadivukarasi Raju, Xiulei Ji, B. Layla Mehdi, Kee Sung Han, Mark H. Engelhard, Guosheng Li, Nigel D. Browning, Karl T. Mueller, Jun Liu

Research output: Contribution to journalArticlepeer-review

70 Scopus citations


Mg batteries have potential advantages in terms of safety, cost, and reliability over existing battery technologies, but their practical implementations are hindered by the lack of amenable high-voltage cathode materials. The development of cathode materials is complicated by limited understandings of the unique divalent Mg2+ ion electrochemistry and the interaction/transportation of Mg2+ ions with host materials. Here, it is shown that highly dispersed vanadium oxide (V2O5) nanoclusters supported on porous carbon frameworks are able to react with Mg2+ ions reversibly in electrolytes that are compatible with Mg metal, and exhibit high capacities and good reaction kinetics. They are able to deliver initial capacities exceeding 300 mAh g-1 at 40 mA g-1 in the voltage window of 0.5 to 2.8 V. The combined electron microscope, spectroscopy, and electrochemistry characterizations suggest a surface-controlled pseudocapacitive electrochemical reaction, and may be best described as a molecular energy storage mechanism. This work can provide a new approach of using the molecular mechanism for pseudocapacitive storage of Mg2+ for Mg batteries cathode materials.

Original languageEnglish (US)
Pages (from-to)3446-3453
Number of pages8
JournalAdvanced Functional Materials
Issue number20
StatePublished - May 24 2016

All Science Journal Classification (ASJC) codes

  • Electronic, Optical and Magnetic Materials
  • General Chemistry
  • Condensed Matter Physics
  • General Materials Science
  • Electrochemistry
  • Biomaterials


Dive into the research topics of 'Molecular Storage of Mg Ions with Vanadium Oxide Nanoclusters'. Together they form a unique fingerprint.

Cite this