TY - JOUR
T1 - Monitoring Lightning Location Based on Deep Learning Combined with Multisource Spatial Data
AU - Lu, Mingyue
AU - Zhang, Yadong
AU - Chen, Min
AU - Yu, Manzhu
AU - Wang, Menglong
N1 - Publisher Copyright:
© 2022 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2022/5/1
Y1 - 2022/5/1
N2 - Lightning is an important cause of casualties, and of the interruption of power supply and distribution facilities. Monitoring lightning locations is essential in disaster prevention and mitigation. Although there are many ways to obtain lightning information, there are still substantial problems in intelligent lightning monitoring. Deep learning combined with weather radar data and land attribute data can lay the foundation for future monitoring of lightning locations. Therefore, based on the residual network, the Lightning Monitoring Residual Network (LM-ResNet) is proposed in this paper to monitor lightning location. Furthermore, comparisons with GoogLeNet and DenseNet were also conducted to evaluate the proposed model. The results show that the LM-ResNet model has significant potential in monitoring lightning locations. In this study, we converted the lightning monitoring problem into a binary classification problem and then obtained weather radar product data (including the plan position indicator (PPI), composite reflectance (CR), echo top (ET), vertical integral liquid water (VIL), and average radial velocity (V)) and land attribute data (including aspect, slope, land use, and NDVI) to establish a lightning feature dataset. During model training, the focal loss function was adopted as a loss function to address the constructed imbalanced lightning feature dataset. Moreover, we conducted stepwise sensitivity analysis and single factor sensitivity analysis. The results of stepwise sensitivity analysis show that the best performance can be achieved using all the data, followed by the combination of PPI, CR, ET, and VIL. The single factor sensitivity analysis results show that the ET radar product data are very important for the monitoring of lightning locations, and the NDVI land attribute data also make significant contributions.
AB - Lightning is an important cause of casualties, and of the interruption of power supply and distribution facilities. Monitoring lightning locations is essential in disaster prevention and mitigation. Although there are many ways to obtain lightning information, there are still substantial problems in intelligent lightning monitoring. Deep learning combined with weather radar data and land attribute data can lay the foundation for future monitoring of lightning locations. Therefore, based on the residual network, the Lightning Monitoring Residual Network (LM-ResNet) is proposed in this paper to monitor lightning location. Furthermore, comparisons with GoogLeNet and DenseNet were also conducted to evaluate the proposed model. The results show that the LM-ResNet model has significant potential in monitoring lightning locations. In this study, we converted the lightning monitoring problem into a binary classification problem and then obtained weather radar product data (including the plan position indicator (PPI), composite reflectance (CR), echo top (ET), vertical integral liquid water (VIL), and average radial velocity (V)) and land attribute data (including aspect, slope, land use, and NDVI) to establish a lightning feature dataset. During model training, the focal loss function was adopted as a loss function to address the constructed imbalanced lightning feature dataset. Moreover, we conducted stepwise sensitivity analysis and single factor sensitivity analysis. The results of stepwise sensitivity analysis show that the best performance can be achieved using all the data, followed by the combination of PPI, CR, ET, and VIL. The single factor sensitivity analysis results show that the ET radar product data are very important for the monitoring of lightning locations, and the NDVI land attribute data also make significant contributions.
UR - http://www.scopus.com/inward/record.url?scp=85130060810&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85130060810&partnerID=8YFLogxK
U2 - 10.3390/rs14092200
DO - 10.3390/rs14092200
M3 - Article
AN - SCOPUS:85130060810
SN - 2072-4292
VL - 14
JO - Remote Sensing
JF - Remote Sensing
IS - 9
M1 - 2200
ER -