TY - JOUR
T1 - Monitoring thermal barrier coating delamination progression by upconversion luminescence imaging
AU - Eldridge, Jeffrey I.
AU - Wolfe, Douglas E.
N1 - Funding Information:
The authors thank Joy Buehler for her skillful metallographic preparation of specimens for SEM examination. We are also grateful for the support of the NASA Transformational Tools and Technologies Project.
Publisher Copyright:
© 2019
PY - 2019/11/25
Y1 - 2019/11/25
N2 - Upconversion luminescence imaging provided contrast for monitoring thermal barrier coating (TBC) delamination progression during interrupted furnace cycling to 1163 °C, with sensitivity even for early stages of subcritical delamination crack propagation. Image contrast for delamination monitoring is obtained because delamination cracks introduce an interface between a higher (TBC) and lower (air) index of refraction medium so that total internal reflection beyond a critical incident angle occurs for both the excitation and emission wavelengths. Therefore, considerably greater luminescence emission is observed from regions containing delamination cracks. Upconversion luminescence produces exceptional image contrast because background fluorescence is very low when the detected emission is at a substantially shorter wavelength than the excitation. The upconversion luminescence emission was excited within a 6 μm thick Er3+/Yb3+ co-doped yttria-stabilized zirconia YSZ (YSZ:Er,Yb) layer beneath a 130 μm thick undoped YSZ layer, sequentially deposited with no interruption by electron-beam physical vapor deposition (EB-PVD) onto a NiPtAl bond-coated superalloy substrate. Excitation at 980 nm produced upconversion luminescence emission from Er3+ at 562 nm after two sequential energy transfers from Yb3+ co-dopant ions. Upconversion luminescence imaging, supported by scanning electron microscope inspection of interfacial damage, revealed that delamination progression proceeded by the formation of isolated microdelaminations with large separations between the TBC and thermally grown oxide (TGO) along with small-separation microcracks that propagated in the regions between the microdelaminations. In addition, upconversion luminescence imaging of the extent of delamination produced by Rockwell indentation clearly showed that the TBC becomes increasingly susceptible to mechanically induced damage throughout its cyclic life.
AB - Upconversion luminescence imaging provided contrast for monitoring thermal barrier coating (TBC) delamination progression during interrupted furnace cycling to 1163 °C, with sensitivity even for early stages of subcritical delamination crack propagation. Image contrast for delamination monitoring is obtained because delamination cracks introduce an interface between a higher (TBC) and lower (air) index of refraction medium so that total internal reflection beyond a critical incident angle occurs for both the excitation and emission wavelengths. Therefore, considerably greater luminescence emission is observed from regions containing delamination cracks. Upconversion luminescence produces exceptional image contrast because background fluorescence is very low when the detected emission is at a substantially shorter wavelength than the excitation. The upconversion luminescence emission was excited within a 6 μm thick Er3+/Yb3+ co-doped yttria-stabilized zirconia YSZ (YSZ:Er,Yb) layer beneath a 130 μm thick undoped YSZ layer, sequentially deposited with no interruption by electron-beam physical vapor deposition (EB-PVD) onto a NiPtAl bond-coated superalloy substrate. Excitation at 980 nm produced upconversion luminescence emission from Er3+ at 562 nm after two sequential energy transfers from Yb3+ co-dopant ions. Upconversion luminescence imaging, supported by scanning electron microscope inspection of interfacial damage, revealed that delamination progression proceeded by the formation of isolated microdelaminations with large separations between the TBC and thermally grown oxide (TGO) along with small-separation microcracks that propagated in the regions between the microdelaminations. In addition, upconversion luminescence imaging of the extent of delamination produced by Rockwell indentation clearly showed that the TBC becomes increasingly susceptible to mechanically induced damage throughout its cyclic life.
UR - http://www.scopus.com/inward/record.url?scp=85071841499&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85071841499&partnerID=8YFLogxK
U2 - 10.1016/j.surfcoat.2019.124923
DO - 10.1016/j.surfcoat.2019.124923
M3 - Article
AN - SCOPUS:85071841499
SN - 0257-8972
VL - 378
JO - Surface and Coatings Technology
JF - Surface and Coatings Technology
M1 - 124923
ER -