TY - JOUR
T1 - Mouldy feed, mycotoxins and Shiga toxin - producing Escherichia coli colonization associated with Jejunal Hemorrhage Syndrome in beef cattle
AU - Baines, Danica
AU - Erb, Stephanie
AU - Turkington, Kelly
AU - Kuldau, Gretchen
AU - Juba, Jean
AU - Masson, Luke
AU - Mazza, Alberto
AU - Roberts, Ray
N1 - Funding Information:
We gratefully acknowledge Keith A. Seifert and Tharcisse Barasubiye from the National Fungal Identification Service (Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, ON, Canada) for providing the identification of the fungal isolates from field samples. This research was supported by a grant from The Growing Forward Fund (Risk Mitigation Strategies Initiative RBPI # 1366) from Agriculture and Agri-Food Canada.
PY - 2011/6/3
Y1 - 2011/6/3
N2 - Background: Both O157 and non-O157 Shiga toxin - producing Escherichia coli (STECs) cause serious human disease outbreaks through the consumption of contaminated foods. Cattle are considered the main reservoir but it is unclear how STECs affect mature animals. Neonatal calves are the susceptible age class for STEC infections causing severe enteritis. In an earlier study, we determined that mycotoxins and STECs were part of the disease complex for dairy cattle with Jejunal Hemorrhage Syndrome (JHS). For STECs to play a role in the development of JHS, we hypothesized that STEC colonization should also be evident in beef cattle with JHS. Aggressive medical and surgical therapies are effective for JHS, but rely on early recognition of clinical signs for optimal outcomes suggesting that novel approaches must be developed for managing this disease. The main objective of this study was to confirm that mouldy feeds, mycotoxins and STEC colonization were associated with the development of JHS in beef cattle.Results: Beef cattle developed JHS after consuming feed containing several types of mycotoxigenic fungi including Fusarium poae, F. verticillioides, F. sporotrichioides, Penicillium roqueforti and Aspergillus fumigatus. Mixtures of STECs colonized the mucosa in the hemorrhaged tissues of the cattle and no other pathogen was identified. The STECs expressed Stx1 and Stx2, but more significantly, Stxs were also present in the blood collected from the lumen of the hemorrhaged jejunum. Feed extracts containing mycotoxins were toxic to enterocytes and 0.1% of a prebiotic, Celmanax Trademark, removed the cytotoxicity in vitro. The inclusion of a prebiotic in the care program for symptomatic beef calves was associated with 69% recovery.Conclusions: The current study confirmed that STECs and mycotoxins are part of the disease complex for JHS in beef cattle. Mycotoxigenic fungi are only relevant in that they produce the mycotoxins deposited in the feed. A prebiotic, Celmanax Trademark, acted as a mycotoxin binder in vitro and interfered with the progression of disease.
AB - Background: Both O157 and non-O157 Shiga toxin - producing Escherichia coli (STECs) cause serious human disease outbreaks through the consumption of contaminated foods. Cattle are considered the main reservoir but it is unclear how STECs affect mature animals. Neonatal calves are the susceptible age class for STEC infections causing severe enteritis. In an earlier study, we determined that mycotoxins and STECs were part of the disease complex for dairy cattle with Jejunal Hemorrhage Syndrome (JHS). For STECs to play a role in the development of JHS, we hypothesized that STEC colonization should also be evident in beef cattle with JHS. Aggressive medical and surgical therapies are effective for JHS, but rely on early recognition of clinical signs for optimal outcomes suggesting that novel approaches must be developed for managing this disease. The main objective of this study was to confirm that mouldy feeds, mycotoxins and STEC colonization were associated with the development of JHS in beef cattle.Results: Beef cattle developed JHS after consuming feed containing several types of mycotoxigenic fungi including Fusarium poae, F. verticillioides, F. sporotrichioides, Penicillium roqueforti and Aspergillus fumigatus. Mixtures of STECs colonized the mucosa in the hemorrhaged tissues of the cattle and no other pathogen was identified. The STECs expressed Stx1 and Stx2, but more significantly, Stxs were also present in the blood collected from the lumen of the hemorrhaged jejunum. Feed extracts containing mycotoxins were toxic to enterocytes and 0.1% of a prebiotic, Celmanax Trademark, removed the cytotoxicity in vitro. The inclusion of a prebiotic in the care program for symptomatic beef calves was associated with 69% recovery.Conclusions: The current study confirmed that STECs and mycotoxins are part of the disease complex for JHS in beef cattle. Mycotoxigenic fungi are only relevant in that they produce the mycotoxins deposited in the feed. A prebiotic, Celmanax Trademark, acted as a mycotoxin binder in vitro and interfered with the progression of disease.
UR - http://www.scopus.com/inward/record.url?scp=79957858209&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=79957858209&partnerID=8YFLogxK
U2 - 10.1186/1746-6148-7-24
DO - 10.1186/1746-6148-7-24
M3 - Article
C2 - 21639911
AN - SCOPUS:79957858209
SN - 1746-6148
VL - 7
JO - BMC Veterinary Research
JF - BMC Veterinary Research
M1 - 24
ER -