TY - JOUR
T1 - mSin3A regulates murine erythroleukemia cell differentiation through association with the TAL1 (or SCL) transcription factor
AU - Huang, Suming
AU - Brandt, Stephen J.
PY - 2000/3
Y1 - 2000/3
N2 - Activation of the TAL1 (or SCL) gene is the most frequent gain-of- function mutation in T-cell acute lymphoblastic leukemia (T-ALL). TAL1 belongs to the basic helix-loop-helix (HLH) family of transcription factors that bind as heterodimers with the E2A and HEB/HTF4 gene products to a nucleotide sequence motif termed the E-box. Reported to act both as an activator and as a repressor of transcription, the mechanisms underlying TAL1-regulated gene expression are poorly understood. We report here that the corepressor mSin3A is associated with TAL1 in murine erythroleukemia (MEL) and human T-ALL cells. Interaction mapping showed that the basic-HLH domain of TAL1 was both necessary and sufficient for TAL1-mSin3A interaction. TAL1 was found, in addition, to interact with the histone deacetylase HDAC1 in vitro and in vivo, and a specific histone deacetylase inhibitor, trichostatin A (TSA), relieved TAL1-mediated repression of an E-box-containing promoter and a GAL4 reporter linked to a thymidine kinase minimal promoter. Further, TAL1 association with mSin3A and HDAC1 declined during dimethyl sulfoxide- induced differentiation of MEL cells in parallel with a decrease in mSin3A abundance. Finally, TSA had a synergistic effect with enforced TAL1 expression in stimulating MEL cells to differentiate, while constitutive expression of mSin3A inhibited MEL cell differentiation. These results demonstrate that a corepressor complex containing mSin3A and HDAC1 interacts with TAL1 and restricts its function in erythroid differentiation. This also has implications for this transcription factor's actions in leukemogenesis.
AB - Activation of the TAL1 (or SCL) gene is the most frequent gain-of- function mutation in T-cell acute lymphoblastic leukemia (T-ALL). TAL1 belongs to the basic helix-loop-helix (HLH) family of transcription factors that bind as heterodimers with the E2A and HEB/HTF4 gene products to a nucleotide sequence motif termed the E-box. Reported to act both as an activator and as a repressor of transcription, the mechanisms underlying TAL1-regulated gene expression are poorly understood. We report here that the corepressor mSin3A is associated with TAL1 in murine erythroleukemia (MEL) and human T-ALL cells. Interaction mapping showed that the basic-HLH domain of TAL1 was both necessary and sufficient for TAL1-mSin3A interaction. TAL1 was found, in addition, to interact with the histone deacetylase HDAC1 in vitro and in vivo, and a specific histone deacetylase inhibitor, trichostatin A (TSA), relieved TAL1-mediated repression of an E-box-containing promoter and a GAL4 reporter linked to a thymidine kinase minimal promoter. Further, TAL1 association with mSin3A and HDAC1 declined during dimethyl sulfoxide- induced differentiation of MEL cells in parallel with a decrease in mSin3A abundance. Finally, TSA had a synergistic effect with enforced TAL1 expression in stimulating MEL cells to differentiate, while constitutive expression of mSin3A inhibited MEL cell differentiation. These results demonstrate that a corepressor complex containing mSin3A and HDAC1 interacts with TAL1 and restricts its function in erythroid differentiation. This also has implications for this transcription factor's actions in leukemogenesis.
UR - http://www.scopus.com/inward/record.url?scp=0033999968&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0033999968&partnerID=8YFLogxK
U2 - 10.1128/MCB.20.6.2248-2259.2000
DO - 10.1128/MCB.20.6.2248-2259.2000
M3 - Article
C2 - 10688671
AN - SCOPUS:0033999968
SN - 0270-7306
VL - 20
SP - 2248
EP - 2259
JO - Molecular and cellular biology
JF - Molecular and cellular biology
IS - 6
ER -