Abstract
In the realm of large language models (LLMs), enhancing instruction-following capability often involves curating expansive training data. This is achieved through two primary schemes: i) Scaling-Inputs: Amplifying (input, output) pairs per task instruction, aiming for better instruction adherence. ii) Scaling Input-Free Tasks: Enlarging tasks, each composed of an (instruction, output) pair without requiring a separate input anymore. However, LLMs under Scaling-Inputs tend to be overly sensitive to inputs, leading to misinterpretation or non-compliance with instructions. Additionally, Scaling Input-Free Tasks demands a substantial number of tasks but is less effective in instruction-following when dealing with instances in Scaling-Inputs. This work introduces MUFFIN, a new scheme of instruction-following dataset curation. Specifically, we automatically Scale Tasks per Input by diversifying these tasks with various input facets. Experimental results across four zero-shot benchmarks, spanning both Scaling-Inputs and Scaling Input-Free Tasks schemes, reveal that LLMs, at various scales, trained on MUFFIN generally demonstrate superior instruction-following capabilities compared to those trained on the two aforementioned schemes.
Original language | English (US) |
---|---|
State | Published - 2024 |
Event | 12th International Conference on Learning Representations, ICLR 2024 - Hybrid, Vienna, Austria Duration: May 7 2024 → May 11 2024 |
Conference
Conference | 12th International Conference on Learning Representations, ICLR 2024 |
---|---|
Country/Territory | Austria |
City | Hybrid, Vienna |
Period | 5/7/24 → 5/11/24 |
All Science Journal Classification (ASJC) codes
- Language and Linguistics
- Computer Science Applications
- Education
- Linguistics and Language