TY - GEN
T1 - Multi-modal hierarchical dirichlet process model for predicting image annotation and image-object label correspondence
AU - Yakhnenko, Oksana
AU - Honavar, Vasant
PY - 2009
Y1 - 2009
N2 - Many real-world applications call for learning predictive relationships from multi-modal data. In particular, in multi-media and web applications, given a dataset of images and their associated captions, one might want to construct a predictive model that not only predicts a caption for the image but also labels the individual objects in the image. We address this problem using a multi-modal hierarchical Dirichlet Process model (MoM-HDP) - a stochastic process for modeling multi-modal data. MoM-HDP is an analog of a multi-modal Latent Dirichlet Allocation (MoM-LDA) with an infinite number of mixture components. Thus MoM-HDP allows circumventing the need for a priori choice of the number of mixture components or the computational expense of model selection. During training, the model has access to an un-segmented image and its caption, but not the labels for each object in the image. The trained model is used to predict the label for each region of interest in a segmented image. The model parameters are estimated efficiently using variational inference. We use two large benchmark datasets to compare the performance of the proposed MoM-HDP model with that of MoM-LDA model as well as some simple alternatives: Naive Bayes and Logistic Regression classifiers based on the formulation of the image annotation and image-label correspondence problems as one-against-all classification. Our experimental results show that unlike MoM-LDA, the performance of MoM-HDP is invariant to the number of mixture components. Furthermore, our experimental evaluation shows that the generalization performance of MoM-HDP is superior to that of MoM-HDP as well as the one-against-all Naive Bayes and Logistic Regression classifiers.
AB - Many real-world applications call for learning predictive relationships from multi-modal data. In particular, in multi-media and web applications, given a dataset of images and their associated captions, one might want to construct a predictive model that not only predicts a caption for the image but also labels the individual objects in the image. We address this problem using a multi-modal hierarchical Dirichlet Process model (MoM-HDP) - a stochastic process for modeling multi-modal data. MoM-HDP is an analog of a multi-modal Latent Dirichlet Allocation (MoM-LDA) with an infinite number of mixture components. Thus MoM-HDP allows circumventing the need for a priori choice of the number of mixture components or the computational expense of model selection. During training, the model has access to an un-segmented image and its caption, but not the labels for each object in the image. The trained model is used to predict the label for each region of interest in a segmented image. The model parameters are estimated efficiently using variational inference. We use two large benchmark datasets to compare the performance of the proposed MoM-HDP model with that of MoM-LDA model as well as some simple alternatives: Naive Bayes and Logistic Regression classifiers based on the formulation of the image annotation and image-label correspondence problems as one-against-all classification. Our experimental results show that unlike MoM-LDA, the performance of MoM-HDP is invariant to the number of mixture components. Furthermore, our experimental evaluation shows that the generalization performance of MoM-HDP is superior to that of MoM-HDP as well as the one-against-all Naive Bayes and Logistic Regression classifiers.
UR - http://www.scopus.com/inward/record.url?scp=72849143525&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=72849143525&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:72849143525
SN - 9781615671090
T3 - Society for Industrial and Applied Mathematics - 9th SIAM International Conference on Data Mining 2009, Proceedings in Applied Mathematics
SP - 280
EP - 290
BT - Society for Industrial and Applied Mathematics - 9th SIAM International Conference on Data Mining 2009, Proceedings in Applied Mathematics 133
T2 - 9th SIAM International Conference on Data Mining 2009, SDM 2009
Y2 - 30 April 2009 through 2 May 2009
ER -