Multi-objective optimization of root phenotypes for nutrient capture using evolutionary algorithms

Harini Rangarajan, David Hadka, Patrick Reed, Jonathan P. Lynch

Research output: Contribution to journalArticlepeer-review

11 Scopus citations

Abstract

Root phenotypes are avenues to the development of crop cultivars with improved nutrient capture, which is an important goal for global agriculture. The fitness landscape of root phenotypes is highly complex and multidimensional. It is difficult to predict which combinations of traits (phene states) will create the best performing integrated phenotypes in various environments. Brute force methods to map the fitness landscape by simulating millions of phenotypes in multiple environments are computationally challenging. Evolutionary optimization algorithms may provide more efficient avenues to explore high dimensional domains such as the root phenotypic space. We coupled the three-dimensional functional–structural plant model, SimRoot, to the Borg Multi-Objective Evolutionary Algorithm (MOEA) and the evolutionary search over several generations facilitated the identification of optimal root phenotypes balancing trade-offs across nutrient uptake, biomass accumulation, and root carbon costs in environments varying in nutrient availability. Our results show that several combinations of root phenes generate optimal integrated phenotypes where performance in one objective comes at the cost of reduced performance in one or more of the remaining objectives, and such combinations differed for mobile and non-mobile nutrients and for maize (a monocot) and bean (a dicot). Functional–structural plant models can be used with multi-objective optimization to identify optimal root phenotypes under various environments, including future climate scenarios, which will be useful in developing the more resilient, efficient crops urgently needed in global agriculture.

Original languageEnglish (US)
Pages (from-to)38-53
Number of pages16
JournalPlant Journal
Volume111
Issue number1
DOIs
StatePublished - Jul 2022

All Science Journal Classification (ASJC) codes

  • Genetics
  • Plant Science
  • Cell Biology

Fingerprint

Dive into the research topics of 'Multi-objective optimization of root phenotypes for nutrient capture using evolutionary algorithms'. Together they form a unique fingerprint.

Cite this