TY - GEN
T1 - Multi-purpose fiber optic sensors for high temperature superconducting magnets
AU - Turenne, M.
AU - Johnson, R.
AU - Hunte, F.
AU - Schwartz, J.
AU - Song, H.
PY - 2009
Y1 - 2009
N2 - Tokamak fusion reactors require the development of magnets capable of generating large magnetic fields under stringent structural constraints. Magnets made with high temperature superconductors (HTS) are well suited to this application, but are vulnerable to quench occurrence during operation. Temperature and strain sensors based on fiber optics are being developed as a first step to counter this contingency. Optical fibers with Bragg gratings are amenable to embedding within superconducting magnets to monitor temperature, strain, irradiation, and to detect quench occurrence. Additionally, in the case of AgX/Ag/Bi2Sr2CaCu2Ox, (Bi2212) wire magnets, fiber optics can serve as a heat treatment process monitor for wind-and-react (W&R) manufacturing. Here we show that it is possible to detect quenches using fiber Bragg grating sensors and examine the effects of Bi2212/optical fiber co-sintering on Bi2212 performance and fiber survivability.
AB - Tokamak fusion reactors require the development of magnets capable of generating large magnetic fields under stringent structural constraints. Magnets made with high temperature superconductors (HTS) are well suited to this application, but are vulnerable to quench occurrence during operation. Temperature and strain sensors based on fiber optics are being developed as a first step to counter this contingency. Optical fibers with Bragg gratings are amenable to embedding within superconducting magnets to monitor temperature, strain, irradiation, and to detect quench occurrence. Additionally, in the case of AgX/Ag/Bi2Sr2CaCu2Ox, (Bi2212) wire magnets, fiber optics can serve as a heat treatment process monitor for wind-and-react (W&R) manufacturing. Here we show that it is possible to detect quenches using fiber Bragg grating sensors and examine the effects of Bi2212/optical fiber co-sintering on Bi2212 performance and fiber survivability.
UR - http://www.scopus.com/inward/record.url?scp=70350716737&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=70350716737&partnerID=8YFLogxK
U2 - 10.1109/FUSION.2009.5226397
DO - 10.1109/FUSION.2009.5226397
M3 - Conference contribution
AN - SCOPUS:70350716737
SN - 9781424426362
T3 - Proceedings - Symposium on Fusion Engineering
BT - 2009 23rd IEEE/NPSS Symposium on Fusion Engineering, SOFE 2009
T2 - 2009 23rd IEEE/NPSS Symposium on Fusion Engineering, SOFE 2009
Y2 - 1 June 2009 through 5 June 2009
ER -