@inproceedings{47c51120d5cb4c108f8b6da9ee7107e8,
title = "Multi-scale simulation of the thermal desorption of large molecules from solid surfaces",
abstract = "We use molecular-dynamics simulations and importance sampling to obtain transition-state theory rate constants for thermal desorption of an n-alkane series from Pt(111). These simulations indicate that the binding of a large molecule to a solid surface is a complex phenomenon involving many local minima. The existence of local minima invalidates the interpretation of thermal desorption as a single, first-order rate process. Because the number of local minima increases with increasing chain length, n-alkane adsorption becomes increasingly dominated by entropy for longer chains. Consequently, the binding energy increases in a less-than-linear way with increasing chain length. Our results provide a quantitative explanation for results and trends in recent experimental studies.",
author = "Fichthorn, {K. A.} and Miron, {R. A.} and A. Kulkarni",
year = "2002",
language = "English (US)",
isbn = "0970827563",
series = "2002 International Conference on Computational Nanoscience and Nanotechnology - ICCN 2002",
pages = "156--158",
editor = "M. Laudon and B. Romanowicz",
booktitle = "2002 International Conference on Computational Nanoscience and Nanotechnology - ICCN 2002",
note = "2002 International Conference on Computational Nanoscience and Nanotechnology - ICCN 2002 ; Conference date: 21-04-2002 Through 25-04-2002",
}