TY - GEN
T1 - Multi-source Unsupervised Domain Adaptation on Graphs with Transferability Modeling
AU - Zhao, Tianxiang
AU - Luo, Dongsheng
AU - Zhang, Xiang
AU - Wang, Suhang
N1 - Publisher Copyright:
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
PY - 2024/8/24
Y1 - 2024/8/24
N2 - In this paper, we tackle a new problem ofmulti-source unsupervised domain adaptation (MSUDA) for graphs, where models trained on annotated source domains need to be transferred to the unsupervised target graph for node classification. Due to the discrepancy in distribution across domains, the key challenge is how to select good source instances and how to adapt the model. Diverse graph structures further complicate this problem, rendering previous MSUDA approaches less effective. In this work, we present the framework Selective Multi-source Adaptation for Graph (SelMAG ), with a graph-modeling-based domain selector, a sub-graph node selector, and a bi-level alignment objective for the adaptation. Concretely, to facilitate the identification of informative source data, the similarity across graphs is disentangled and measured with the transferability of a graph-modeling task set, and we use it as evidence for source domain selection. A node selector is further incorporated to capture the variation in transferability of nodes within the same source domain. To learn invariant features for adaptation, we align the target domain to selected source data both at the embedding space by minimizing the optimal transport distance and at the classification level by distilling the label function. Modules are explicitly learned to select informative source data and conduct the alignment in virtual training splits with a meta-learning strategy. Experimental results on five graph datasets show the effectiveness of the proposed method.
AB - In this paper, we tackle a new problem ofmulti-source unsupervised domain adaptation (MSUDA) for graphs, where models trained on annotated source domains need to be transferred to the unsupervised target graph for node classification. Due to the discrepancy in distribution across domains, the key challenge is how to select good source instances and how to adapt the model. Diverse graph structures further complicate this problem, rendering previous MSUDA approaches less effective. In this work, we present the framework Selective Multi-source Adaptation for Graph (SelMAG ), with a graph-modeling-based domain selector, a sub-graph node selector, and a bi-level alignment objective for the adaptation. Concretely, to facilitate the identification of informative source data, the similarity across graphs is disentangled and measured with the transferability of a graph-modeling task set, and we use it as evidence for source domain selection. A node selector is further incorporated to capture the variation in transferability of nodes within the same source domain. To learn invariant features for adaptation, we align the target domain to selected source data both at the embedding space by minimizing the optimal transport distance and at the classification level by distilling the label function. Modules are explicitly learned to select informative source data and conduct the alignment in virtual training splits with a meta-learning strategy. Experimental results on five graph datasets show the effectiveness of the proposed method.
UR - http://www.scopus.com/inward/record.url?scp=85203688404&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85203688404&partnerID=8YFLogxK
U2 - 10.1145/3637528.3671829
DO - 10.1145/3637528.3671829
M3 - Conference contribution
AN - SCOPUS:85203688404
T3 - Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
SP - 4479
EP - 4489
BT - KDD 2024 - Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining
PB - Association for Computing Machinery
T2 - 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD 2024
Y2 - 25 August 2024 through 29 August 2024
ER -