Multi-target tracking of time-varying spatial patterns

Jingchen Liu, Yanxi Liu

Research output: Chapter in Book/Report/Conference proceedingConference contribution

12 Scopus citations

Abstract

Time-varying spatial patterns are common, but few computational tools exist for discovering and tracking multiple, sometimes overlapping, spatial structures of targets. We propose a multi-target tracking framework that takes advantage of spatial patterns inside the targets even though the number, the form and the regularity of such patterns vary with time. RANSAC-based model fitting algorithms are developed to automatically recognize (or dismiss) (il)legitimate patterns. Patterns are represented using a mixture of Markov Random Fields (MRF) with constraints (local and global) and preferences encoded into pairwise potential functions. To handle pattern variations continuously, we introduce a posterior probability for each spatial pattern modeled as a Bernoulli distribution. Tracking is achieved by inferring the optimal state configurations of the targets using belief propagation on a mixture of MRFs. We have evaluated our formulation on real video data with multiple targets containing time-varying lattice patterns and/or reflection symmetry patterns. Experimental results of our proposed algorithm show superior tracking performance over existing methods.

Original languageEnglish (US)
Title of host publication2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2010
Pages1839-1846
Number of pages8
DOIs
StatePublished - 2010
Event2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2010 - San Francisco, CA, United States
Duration: Jun 13 2010Jun 18 2010

Publication series

NameProceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
ISSN (Print)1063-6919

Other

Other2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2010
Country/TerritoryUnited States
CitySan Francisco, CA
Period6/13/106/18/10

All Science Journal Classification (ASJC) codes

  • Software
  • Computer Vision and Pattern Recognition

Fingerprint

Dive into the research topics of 'Multi-target tracking of time-varying spatial patterns'. Together they form a unique fingerprint.

Cite this