@inproceedings{94443ea068e84dcbbf134b8800533c52,
title = "Multi-view network embedding via graph factorization clustering and co-regularized multi-view agreement",
abstract = "Real-world social networks and digital platforms are comprised of individuals (nodes) that are linked to other individuals or entities through multiple types of relationships (links). Sub-networks of such a network based on each type of link correspond to distinct views of the underlying network. In real-world applications each node is typically linked to only a small subset of other nodes. Hence, practical approaches to problems such as node labeling have to cope with the resulting sparse networks. While low-dimensional network embeddings offer a promising approach to this problem, most of the current network embedding methods focus primarily on single view networks. We introduce a novel multi-view network embedding (MVNE) algorithm for constructing low-dimensional node embeddings from multi-view networks. MVNE adapts and extends an approach to single view node embedding using graph factorization clustering (GFC) to the multi-view setting using an objective function that maximizes the agreement between views based on both the local and global structure of the underlying multi-view graph. Our experiments with several benchmark real-world single view networks show that SVNE yields network embeddings that are competitive with or superior to those produced by the state-of-the-art single view network embedding methods when the embeddings are used for labeling unlabeled nodes in the networks. Our experiments with several multi-view networks show that MVNE substantially outperforms the single view methods on integrated view and the state-of-the-art multi-view methods. We further show that even when the goal is to predict labels of nodes within a single target view, MVNE outperforms its single-view counterpart suggesting that the MVNE is able to extract the information that is useful for labeling nodes in the target view from the all of the views.",
author = "Yiwei Sun and Ngot Bui and Hsieh, {Tsung Yu} and Vasant Honavar",
note = "Funding Information: This project was supported in part by the National Center for Advancing Translational Sciences, National Institutes of Health through the grant UL1 TR000127 and TR002014, by the National Science Foundation, through the grants 1518732, 1640834, and 1636795; the Pennsylvania State Universitys Institute for Cyberscience and the Center for Big Data Analytics and Discovery Informatics; the Edward Frymoyer Endowed Professorship in Information Sciences and Technology at Pennsylvania State University and the Sudha Murty Distinguished Visiting Chair in Neurocomputing and Data Science funded by the Pratiksha Trust at the Indian Institute of Science [both held by Vasant Honavar]. The content is solely the responsibility of the authors and does not necessarily represent the official views of the sponsors. Publisher Copyright: {\textcopyright} 2018 IEEE.; 18th IEEE International Conference on Data Mining Workshops, ICDMW 2018 ; Conference date: 17-11-2018 Through 20-11-2018",
year = "2018",
month = jul,
day = "2",
doi = "10.1109/ICDMW.2018.00145",
language = "English (US)",
series = "IEEE International Conference on Data Mining Workshops, ICDMW",
publisher = "IEEE Computer Society",
pages = "1006--1013",
editor = "Hanghang Tong and Zhenhui Li and Feida Zhu and Jeffrey Yu",
booktitle = "Proceedings - 18th IEEE International Conference on Data Mining Workshops, ICDMW 2018",
address = "United States",
}