Abstract
Two-dimensional single layer metallodielectric photonic crystals (MDPCs) with multiple stopbands in the far-infrared transmission spectrum have been designed and fabricated using frequency selective surface (FSS) techniques at the micron-scale, These surfaces consist of self-similar fractal cross-dipole or fractal square patch metallic elements patterned on thin, flexible dielectric substrates using standard semiconductor microfabrication techniques. Optimization of design parameters, such as element spacing, through the application of a periodic method of moments (PMM) modeling code leads to experimental results with two transmission stopbands, each with greater than 10dB attenuation. These results are in excellent agreement with those predicted by the PMM model. The positions of the bands can be readily controlled by utilizing the modeling data to determine optimum element geometries.
Original language | English (US) |
---|---|
Pages (from-to) | 1907-1910 |
Number of pages | 4 |
Journal | IEEE Antennas and Propagation Society, AP-S International Symposium (Digest) |
Volume | 2 |
DOIs | |
State | Published - 2004 |
Event | IEEE Antennas and Propagation Society Symposium 2004 Digest held in Conjunction with: USNC/URSI National Radio Science Meeting - Monterey, CA, United States Duration: Jun 20 2004 → Jun 25 2004 |
All Science Journal Classification (ASJC) codes
- Electrical and Electronic Engineering