Multiharmonic adaptive vibration control of misaligned driveline via active magnetic bearings

Hans A. DeSmidt, K. W. Wang, Edward C. Smith

Research output: Contribution to journalArticlepeer-review

7 Scopus citations


Active magnetic bearings (AMBs) have been proposed by many researchers and engineers as an alternative to replace traditional contact bearings in rotor and driveshaft systems. Such active, noncontact bearings do not have frictional wear and can be used to suppress vibration in sub- and supercritical rotor-dynamic applications. One important issue that has not yet been addressed by previous AMB-driveline control studies is the effect of driveline misalignment. Previous research has shown that misalignment causes periodic parametric and forcing actions, which greatly impact both driveline stability and vibration levels. Therefore, in order to ensure closed-loop stability and acceptable performance of any AMB controlled driveline subjected to misalignment, these effects must be accounted for in the control system design. In this paper, a hybrid proportional derivative (PD) feedback/multiharmonic adaptive vibration control (MHAVC) feedforward law is developed for an AMB/U-joint-driveline system, which is subjected to parallel-offset misalignments, imbalance, and load-torque operating conditions. Conceptually, the PD feedback ensures closed-loop stability while the MHAVC feedforward suppresses steady-state vibration. It is found that there is a range of P and D feedback gains that ensures both MHAVC convergence and closed-loop stability robustness with respect to shaft internal damping induced whirl and misalignment effects. Finally, it is analytically and experimentally demonstrated that the hybrid PD-MHAVC law effectively adapts to and suppresses multiharmonic vibration induced by imbalance, misalignment, and load-torque effects at multiple operating speeds without explicit knowledge of the disturbance conditions.

Original languageEnglish (US)
Pages (from-to)410061-4100613
Number of pages3690553
JournalJournal of Dynamic Systems, Measurement and Control, Transactions of the ASME
Issue number4
StatePublished - Jul 2008

All Science Journal Classification (ASJC) codes

  • Control and Systems Engineering
  • Information Systems
  • Instrumentation
  • Mechanical Engineering
  • Computer Science Applications


Dive into the research topics of 'Multiharmonic adaptive vibration control of misaligned driveline via active magnetic bearings'. Together they form a unique fingerprint.

Cite this