Multilayer detection and classification of specular and nonspecular meteor trails

Siming Zhao, Julio Urbina, Lars Dyrud, Ryan Seal

Research output: Contribution to journalArticlepeer-review

3 Scopus citations


Meteor radar data are continuously collected by different radar systems that operate throughout the year. Analyzing this fast growing, large data set requires efficient and reliable detection routines. Currently most meteor echo routines search for underdense meteor trails, often discarding overdense and nonspecular meteor trails. This is because their main purpose is the study of mesospheric winds. But the study of meteor flux requires the unique identification of each type of meteor reflections. In this paper, a multilayer radar detection and classification algorithm is proposed to correctly identify multiple types of meteor trail reflections. The process consists of two steps. The first step is based on the time-frequency waveform detector. In this step, we start by selecting low signal-to-noise ratio (SNR) values in order to detect all types of radar echoes; however, a high probability offalse alarm is often produced. In the second step, several features from the detected echoes in step one are extracted and a support vector machine (SVM) classifier is constructed to further classify these echoes. The algorithm was tested using data collected from a 50-MHz radar stationed near Salinas, Puerto Rico, on April 5, 1998. A total of 270 detected echoes were labeled as underdense, overdense, nonspecular, other ionospheric echoes, and noise. We used 50% of the labeled echoes as training samples and divided the rest 50% testing samples as 10 subsets for testing. This technique successfully classified about 85% of the testing samples. Details concerning implementation, feature extraction, and data visualization are presented and discussed.

Original languageEnglish (US)
Article numberRS6009
JournalRadio Science
Issue number6
StatePublished - 2011

All Science Journal Classification (ASJC) codes

  • Condensed Matter Physics
  • General Earth and Planetary Sciences
  • Electrical and Electronic Engineering


Dive into the research topics of 'Multilayer detection and classification of specular and nonspecular meteor trails'. Together they form a unique fingerprint.

Cite this