Multimeric Structure of the Secreted Meprin A Metalloproteinase and Characterization of the Functional Protomer

Faoud T. Ishmael, Mona T. Norcum, Stephen J. Benkovic, Judith S. Bond

Research output: Contribution to journalArticlepeer-review

43 Scopus citations


Meprin A secreted from kidney and intestinal epithelial cells is capable of cleaving growth factors, extracellular matrix proteins, and biologically active peptides. The secreted form of meprin A is a homo-oligomer composed of α subunits, a multidomain protease of 582 amino acids coded for near the major histocompatibility complex of the mouse and human genome. Analyses of the recombinant homo-oligomeric form of mouse meprin A by gel filtration, nondenaturing gel electrophoresis, and cross-linking (with disuccinimidyl suberate or N-(4-azido-2,3,5,6-tetraflourobenzyl)-3-maleimidylpropionamide) indicate that the secreted enzyme forms high molecular weight multimers, with a predominance of decamers. The multimers are composed of disulfide-linked dimers attached noncovalently by interactions involving the meprin, A5 protein, receptor protein-tyrosine phosphatase μ (MAM) domain. The active protomer is the noncovalently linked dimer. Linkage of active protomers by disulfide-bonds results in an oligomer of ∼900 kDa, which is unique among proteases and distinguishes meprin A as the largest known secreted protease. Electron microscopy revealed that the protein was present in two states, a crescent-shaped structure and a closed ring. It is concluded from this and other data that the covalent attachment of the protomers enables noncovalent associations of the native enzyme to form higher oligomers that are critical for hydrolysis of protein substrates.

Original languageEnglish (US)
Pages (from-to)23207-23211
Number of pages5
JournalJournal of Biological Chemistry
Issue number25
StatePublished - Jun 22 2001

All Science Journal Classification (ASJC) codes

  • Biochemistry
  • Molecular Biology
  • Cell Biology


Dive into the research topics of 'Multimeric Structure of the Secreted Meprin A Metalloproteinase and Characterization of the Functional Protomer'. Together they form a unique fingerprint.

Cite this