TY - GEN
T1 - Multimodal 3D PET/CT system for bronchoscopic procedure planning
AU - Cheirsilp, Ronnarit
AU - Higgins, William Evan
PY - 2013
Y1 - 2013
N2 - Integrated positron emission tomography (PET) / computed-tomography (CT) scanners give 3D multimodal data sets of the chest. Such data sets offer the potential for more complete and specific identification of suspect lesions and lymph nodes for lung-cancer assessment. This in turn enables better planning of staging bronchoscopies. The richness of the data, however, makes the visualization and planning process difficult. We present an integrated multimodal 3D PET/CT system that enables eficient region identification and bronchoscopic procedure planning. The system first invokes a series of automated 3D image-processing methods that construct a 3D chest model. Next, the user interacts with a set of interactive multimodal graphical tools that facilitate procedure planning for specific regions of interest (ROIs): 1) an interactive region candidate list that enables eficient ROI viewing in all tools; 2) a virtual PET-CT bronchoscopy rendering with SUV quantitative visualization to give a "y through" endoluminal view of prospective ROIs; 3) transverse, sagittal, coronal multi-planar reformatted (MPR) views of the raw CT, PET, and fused CT-PET data; and 4) interactive multimodal volume/surface rendering to give a 3D perspective of the anatomy and candidate ROIs. In addition the ROI selection process is driven by a semi-automatic multimodal method for region identification. In this way, the system provides both global and local information to facilitate more specific ROI identification and procedure planning. We present results to illustrate the system's function and performance.
AB - Integrated positron emission tomography (PET) / computed-tomography (CT) scanners give 3D multimodal data sets of the chest. Such data sets offer the potential for more complete and specific identification of suspect lesions and lymph nodes for lung-cancer assessment. This in turn enables better planning of staging bronchoscopies. The richness of the data, however, makes the visualization and planning process difficult. We present an integrated multimodal 3D PET/CT system that enables eficient region identification and bronchoscopic procedure planning. The system first invokes a series of automated 3D image-processing methods that construct a 3D chest model. Next, the user interacts with a set of interactive multimodal graphical tools that facilitate procedure planning for specific regions of interest (ROIs): 1) an interactive region candidate list that enables eficient ROI viewing in all tools; 2) a virtual PET-CT bronchoscopy rendering with SUV quantitative visualization to give a "y through" endoluminal view of prospective ROIs; 3) transverse, sagittal, coronal multi-planar reformatted (MPR) views of the raw CT, PET, and fused CT-PET data; and 4) interactive multimodal volume/surface rendering to give a 3D perspective of the anatomy and candidate ROIs. In addition the ROI selection process is driven by a semi-automatic multimodal method for region identification. In this way, the system provides both global and local information to facilitate more specific ROI identification and procedure planning. We present results to illustrate the system's function and performance.
UR - http://www.scopus.com/inward/record.url?scp=84878390509&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84878390509&partnerID=8YFLogxK
U2 - 10.1117/12.2004571
DO - 10.1117/12.2004571
M3 - Conference contribution
AN - SCOPUS:84878390509
SN - 9780819494443
T3 - Proceedings of SPIE - The International Society for Optical Engineering
BT - Medical Imaging 2013
T2 - Medical Imaging 2013: Computer-Aided Diagnosis
Y2 - 12 February 2013 through 14 February 2013
ER -