Multimodal imaging of the receptor for advanced glycation end-products with molecularly targeted nanoparticles

Christian J. Konopka, Marcin Wozniak, Jamila Hedhli, Agata Ploska, Aaron Schwartz-Duval, Anna Siekierzycka, Dipanjan Pan, Gnanasekar Munirathinam, Iwona T. Dobrucki, Leszek Kalinowski, Lawrence W. Dobrucki

Research output: Contribution to journalArticlepeer-review

27 Scopus citations


The receptor for advanced glycation end-products (RAGE) is central to multiple disease states, including diabetes-related conditions such as peripheral arterial disease (PAD). Despite RAGE’s importance in these pathologies, there remains a need for a molecular imaging agent that can accurately assess RAGE levels in vivo. Therefore, we have developed a multimodal nanoparticle-based imaging agent targeted at RAGE with the well-characterized RAGE ligand, carboxymethyllysine (CML)-modified human serum albumin (HSA). Methods: A multimodal tracer ( 64 Cu-Rho-G4-CML) was developed using a generation-4 (G4) polyamidoamine (PAMAM) dendrimer, conjugated with both rhodamine and copper-64 ( 64 Cu) chelator (NOTA) for optical and PET imaging, respectively. First, 64 Cu-Rho-G4-CML and its non-targeted analogue ( 64 Cu-Rho-G4-HSA) were evaluated chemically using techniques such as dynamic light scattering (DLS), electron microscopy and nuclear magnetic resonance (NMR). The tracers’ binding capabilities were examined at the cellular level and optimized using live and fixed HUVEC cells grown in 5.5-30 mM glucose, followed by in vivo PET-CT imaging, where the probes’ kinetics, biodistribution, and RAGE targeting properties were examined in a murine model of hindlimb ischemia. Finally, histological assessment of RAGE levels in both ischemic and non-ischemic tissues was performed. Conclusions: Our RAGE-targeted probe demonstrated an average size of 450 nm, a Kd of 340-390 nM, rapid blood clearance, and a 3.4 times greater PET uptake in ischemic RAGE-expressing hindlimbs than their non-ischemic counterpart. We successfully demonstrated increased RAGE expression in a murine model of hindlimb ischemia and the feasibility for non-invasive examination of cellular, tissue, and whole-body RAGE levels with a molecularly targeted tracer.

Original languageEnglish (US)
Pages (from-to)5012-5024
Number of pages13
Issue number18
StatePublished - 2018

All Science Journal Classification (ASJC) codes

  • Medicine (miscellaneous)
  • Pharmacology, Toxicology and Pharmaceutics (miscellaneous)


Dive into the research topics of 'Multimodal imaging of the receptor for advanced glycation end-products with molecularly targeted nanoparticles'. Together they form a unique fingerprint.

Cite this