TY - GEN
T1 - Multimodal Instruction Tuning with Conditional Mixture of LoRA
AU - Shen, Ying
AU - Xu, Zhiyang
AU - Wang, Qifan
AU - Cheng, Yu
AU - Yin, Wenpeng
AU - Huang, Lifu
N1 - Publisher Copyright:
© 2024 Association for Computational Linguistics.
PY - 2024
Y1 - 2024
N2 - Multimodal Large Language Models (MLLMs) have demonstrated remarkable proficiency in diverse tasks across different domains, with an increasing focus on improving their zero-shot generalization capabilities for unseen multimodal tasks. Multimodal instruction tuning has emerged as a successful strategy for achieving zero-shot generalization by fine-tuning pre-trained models on diverse multimodal tasks through instructions. As MLLMs grow in complexity and size, the need for parameter-efficient fine-tuning methods like Low-Rank Adaption (LoRA), which fine-tunes with a minimal set of parameters, becomes essential. However, applying LoRA in multimodal instruction tuning presents the challenge of task interference, which leads to performance degradation, especially when dealing with a broad array of multimodal tasks. To address this, this paper introduces a novel approach that integrates multimodal instruction tuning with Conditional Mixture-of-LoRA (MixLoRA). It innovates upon LoRA by dynamically constructing low-rank adaptation matrices tailored to the unique demands of each input instance, aiming to mitigate task interference. Experimental results on various multimodal evaluation datasets indicate that MixLoRA not only outperforms the conventional LoRA with the same or even higher ranks, demonstrating its efficacy and adaptability in diverse multimodal tasks.
AB - Multimodal Large Language Models (MLLMs) have demonstrated remarkable proficiency in diverse tasks across different domains, with an increasing focus on improving their zero-shot generalization capabilities for unseen multimodal tasks. Multimodal instruction tuning has emerged as a successful strategy for achieving zero-shot generalization by fine-tuning pre-trained models on diverse multimodal tasks through instructions. As MLLMs grow in complexity and size, the need for parameter-efficient fine-tuning methods like Low-Rank Adaption (LoRA), which fine-tunes with a minimal set of parameters, becomes essential. However, applying LoRA in multimodal instruction tuning presents the challenge of task interference, which leads to performance degradation, especially when dealing with a broad array of multimodal tasks. To address this, this paper introduces a novel approach that integrates multimodal instruction tuning with Conditional Mixture-of-LoRA (MixLoRA). It innovates upon LoRA by dynamically constructing low-rank adaptation matrices tailored to the unique demands of each input instance, aiming to mitigate task interference. Experimental results on various multimodal evaluation datasets indicate that MixLoRA not only outperforms the conventional LoRA with the same or even higher ranks, demonstrating its efficacy and adaptability in diverse multimodal tasks.
UR - http://www.scopus.com/inward/record.url?scp=85204419950&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85204419950&partnerID=8YFLogxK
U2 - 10.18653/v1/2024.acl-long.38
DO - 10.18653/v1/2024.acl-long.38
M3 - Conference contribution
AN - SCOPUS:85204419950
T3 - Proceedings of the Annual Meeting of the Association for Computational Linguistics
SP - 637
EP - 648
BT - Long Papers
A2 - Ku, Lun-Wei
A2 - Martins, Andre F. T.
A2 - Srikumar, Vivek
PB - Association for Computational Linguistics (ACL)
T2 - 62nd Annual Meeting of the Association for Computational Linguistics, ACL 2024
Y2 - 11 August 2024 through 16 August 2024
ER -