Multimodal recurrent model with attention for automated radiology report generation

Yuan Xue, Tao Xu, L. Rodney Long, Zhiyun Xue, Sameer Antani, George R. Thoma, Xiaolei Huang

Research output: Chapter in Book/Report/Conference proceedingConference contribution

84 Scopus citations

Abstract

Radiologists routinely examine medical images such as X-Ray, CT, or MRI and write reports summarizing their descriptive findings and conclusive impressions. A computer-aided radiology report generation system can lighten the workload for radiologists considerably and assist them in decision making. Although the rapid development of deep learning technology makes the generation of a single conclusive sentence possible, results produced by existing methods are not sufficiently reliable due to the complexity of medical images. Furthermore, generating detailed paragraph descriptions for medical images remains a challenging problem. To tackle this problem, we propose a novel generative model which generates a complete radiology report automatically. The proposed model incorporates the Convolutional Neural Networks (CNNs) with the Long Short-Term Memory (LSTM) in a recurrent way. It is capable of not only generating high-level conclusive impressions, but also generating detailed descriptive findings sentence by sentence to support the conclusion. Furthermore, our multimodal model combines the encoding of the image and one generated sentence to construct an attention input to guide the generation of the next sentence, and henceforth maintains coherence among generated sentences. Experimental results on the publicly available Indiana U. Chest X-rays from the Open-i image collection show that our proposed recurrent attention model achieves significant improvements over baseline models according to multiple evaluation metrics.

Original languageEnglish (US)
Title of host publicationMedical Image Computing and Computer Assisted Intervention – MICCAI 2018 - 21st International Conference, 2018, Proceedings
EditorsJulia A. Schnabel, Christos Davatzikos, Carlos Alberola-López, Gabor Fichtinger, Alejandro F. Frangi
PublisherSpringer Verlag
Pages457-466
Number of pages10
ISBN (Print)9783030009274
DOIs
StatePublished - 2018
Event21st International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2018 - Granada, Spain
Duration: Sep 16 2018Sep 20 2018

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume11070 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference21st International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2018
Country/TerritorySpain
CityGranada
Period9/16/189/20/18

All Science Journal Classification (ASJC) codes

  • Theoretical Computer Science
  • Computer Science(all)

Fingerprint

Dive into the research topics of 'Multimodal recurrent model with attention for automated radiology report generation'. Together they form a unique fingerprint.

Cite this