Multimodal spatiotemporal information fusion using neural-symbolic modeling for early detection of combustion instabilities

Soumalya Sarkar, Devesh K. Jha, Kin G. Lore, Soumik Sarkar, Asok Ray

Research output: Chapter in Book/Report/Conference proceedingConference contribution

2 Scopus citations


Detection and prediction of combustion instabilities are of interest to the gas turbine engine community with many practical applications. This paper presents a dynamic data-driven approach to accurately detect precursors to the combustion instability phenomena. In particular, grey-scale images of combustion flames have been used in combination with pressure time-series data for information fusion to detect and predict flame instabilities in the combustion process. These grey-scale images are analyzed using deep belief network (DBN). The cross-dependencies between the features extracted by the DBN and the symbolic sequences generated from pressure time-series are then analyzed using ×D-Markov (pronounced cross D-Markov) models that are constructed by a combination of state-splitting and cross-entropy rate; this leads to the development of a variable-memory cross-model as a representation of the underlying physical process. These cross-models are then used for detection and prediction of combustion instability phenomena. The proposed concept is validated on experimental data collected from a laboratory-scale swirl-stabilized combustor apparatus, where the instability phenomena are induced by typical protocols leading to unstable flames.

Original languageEnglish (US)
Title of host publication2016 American Control Conference, ACC 2016
PublisherInstitute of Electrical and Electronics Engineers Inc.
Number of pages6
ISBN (Electronic)9781467386821
StatePublished - Jul 28 2016
Event2016 American Control Conference, ACC 2016 - Boston, United States
Duration: Jul 6 2016Jul 8 2016

Publication series

NameProceedings of the American Control Conference
ISSN (Print)0743-1619


Other2016 American Control Conference, ACC 2016
Country/TerritoryUnited States

All Science Journal Classification (ASJC) codes

  • Electrical and Electronic Engineering


Dive into the research topics of 'Multimodal spatiotemporal information fusion using neural-symbolic modeling for early detection of combustion instabilities'. Together they form a unique fingerprint.

Cite this