Multiphase computation of cavitation breakdown in model and prototype scale Francis turbines

Research output: Chapter in Book/Report/Conference proceedingConference contribution

3 Scopus citations

Abstract

Steady-periodic multiphase Computational Fluid Dynamics (CFD) simulations were conducted to capture cavitation breakdown in a Francis hydroturbine due to largescale vaporous structures. A reduced-scale model and a full-scale prototype were investigated to display differences in vapor content and machine performance caused by lack of Reynolds and Froude similarity. The model scale efficiencies compared favorably (within 3%) to the experimental cavitation tests. The CFD model and prototype displayed distinct qualitative and quantitative differences as σ was reduced. A stage-by-stage analysis was conducted to assess the effect of cavitation on loss distribution throughout the machine. Furthermore, a formal mesh refinement study was conducted on efficiency and volume of vapor, with three mesh levels and Richardson extrapolation, to ensure convergence.

Original languageEnglish (US)
Title of host publicationFora
PublisherAmerican Society of Mechanical Engineers
ISBN (Electronic)9780791857229
DOIs
StatePublished - 2015
EventASME/JSME/KSME 2015 Joint Fluids Engineering Conference, AJKFluids 2015 - Seoul, Korea, Republic of
Duration: Jul 26 2015Jul 31 2015

Publication series

NameASME/JSME/KSME 2015 Joint Fluids Engineering Conference, AJKFluids 2015
Volume2

Other

OtherASME/JSME/KSME 2015 Joint Fluids Engineering Conference, AJKFluids 2015
Country/TerritoryKorea, Republic of
CitySeoul
Period7/26/157/31/15

All Science Journal Classification (ASJC) codes

  • Fluid Flow and Transfer Processes

Fingerprint

Dive into the research topics of 'Multiphase computation of cavitation breakdown in model and prototype scale Francis turbines'. Together they form a unique fingerprint.

Cite this