Multiplatform physiologic and metabolic phenotyping reveals microbial toxicity

Jingwei Cai, Robert G. Nichols, Imhoi Koo, Zachary A. Kalikow, Limin Zhang, Yuan Tian, Jingtao Zhang, Philip B. Smith, Andrew D. Patterson

Research output: Contribution to journalArticlepeer-review

7 Scopus citations

Abstract

The gut microbiota is susceptible to modulation by environmental stimuli and therefore can serve as a biological sensor. Recent evidence suggests that xenobiotics can disrupt the interaction between the microbiota and host. Here, we describe an approach that combines in vitro microbial incubation (isolated cecal contents from mice), flow cytometry, and mass spectrometry- and 1H nuclear magnetic resonance (NMR)-based metabolomics to evaluate xenobiotic-induced microbial toxicity. Tempol, a stabilized free radical scavenger known to remodel the microbial community structure and function in vivo, was studied to assess its direct effect on the gut microbiota. The microbiota was isolated from mouse cecum and was exposed to tempol for 4 h under strict anaerobic conditions. The flow cytometry data suggested that short-term tempol exposure to the microbiota is associated with disrupted membrane physiology as well as compromised metabolic activity. Mass spectrometry and NMR metabolomics revealed that tempol exposure significantly disrupted microbial metabolic activity, specifically indicated by changes in short-chain fatty acids, branched-chain amino acids, amino acids, nucleotides, glucose, and oligosaccharides. In addition, a mouse study with tempol (5 days gavage) showed similar microbial physiologic and metabolic changes, indicating that the in vitro approach reflected in vivo conditions. Our results, through evaluation of microbial viability, physiology, and metabolism and a comparison of in vitro and in vivo exposures with tempol, suggest that physiologic and metabolic phenotyping can provide unique insight into gut microbiota toxicity.

Original languageEnglish (US)
Article numbere00123
JournalmSystems
Volume3
Issue number6
DOIs
StatePublished - Nov 1 2018

All Science Journal Classification (ASJC) codes

  • Microbiology
  • Physiology
  • Biochemistry
  • Ecology, Evolution, Behavior and Systematics
  • Modeling and Simulation
  • Molecular Biology
  • Genetics
  • Computer Science Applications

Fingerprint

Dive into the research topics of 'Multiplatform physiologic and metabolic phenotyping reveals microbial toxicity'. Together they form a unique fingerprint.

Cite this