Abstract
The pulsed laser deposition method was used to decorate appropriately single wall carbon nanotubes (SWCNTs) with PbS quantum dots (QDs), leading to the formation of a novel class of SWCNTs/PbS-QDs nanohybrids (NHs), without resorting to any ligand engineering and/or surface functionalization. The number of laser ablation pulses (NLp) was used to control the average size of the PbS-QDs and their coverage on the SWCNTs' surface. Photoconductive (PC) devices fabricated from these SWCNTs/PbS-QDs NHs have shown a significantly enhanced photoresponse, which is found to be PbS-QD size dependent. Wavelength-resolved photocurrent measurements revealed a strong photoconductivity of the NHs in the UV-visible region, which is shown to be due to multiple exciton generation (MEG) in the PbS-QDs. For the 6.5 nm-diameter PbS-QDs (with a bandgap (Eg) = 0.86 eV), the MEG contribution of the NHs based PC devices was shown to lead to a normalized internal quantum efficiency in excess of 300% for photon energies ≥4.5Eg. While the lowest MEG threshold in our NHs based PC devices is found to be of ∼2.5Eg, the MEG efficiency reaches values as high as 0.9 ± 0.1.
Original language | English (US) |
---|---|
Article number | 20083 |
Journal | Scientific reports |
Volume | 6 |
DOIs | |
State | Published - Feb 2 2016 |
All Science Journal Classification (ASJC) codes
- General