TY - JOUR
T1 - Multiple Imputation with Factor Scores
T2 - A Practical Approach for Handling Simultaneous Missingness Across Items in Longitudinal Designs
AU - Li, Yanling
AU - Oravecz, Zita
AU - Ji, Linying
AU - Chow, Sy Miin
N1 - Publisher Copyright:
© 2024 The Author(s). Published with license by Taylor & Francis Group, LLC.
PY - 2024
Y1 - 2024
N2 - Missingness in intensive longitudinal data triggered by latent factors constitute one type of nonignorable missingness that can generate simultaneous missingness across multiple items on each measurement occasion. To address this issue, we propose a multiple imputation (MI) strategy called MI-FS, which incorporates factor scores, lag/lead variables, and missing data indicators into the imputation model. In the context of process factor analysis (PFA), we conducted a Monte Carlo simulation study to compare the performance of MI-FS to listwise deletion (LD), MI with manifest variables (MI-MV, which implements MI on both dependent variables and covariates), and partial MI with MVs (PMI-MV, which implements MI on covariates and handles missing dependent variables via full-information maximum likelihood) under different conditions. Across conditions, we found MI-based methods overall outperformed the LD; the MI-FS approach yielded lower root mean square errors (RMSEs) and higher coverage rates for auto-regression (AR) parameters compared to MI-MV; and the PMI-MV and MI-MV approaches yielded higher coverage rates for most parameters except AR parameters compared to MI-FS. These approaches were also compared using an empirical example investigating the relationships between negative affect and perceived stress over time. Recommendations on when and how to incorporate factor scores into MI processes were discussed.
AB - Missingness in intensive longitudinal data triggered by latent factors constitute one type of nonignorable missingness that can generate simultaneous missingness across multiple items on each measurement occasion. To address this issue, we propose a multiple imputation (MI) strategy called MI-FS, which incorporates factor scores, lag/lead variables, and missing data indicators into the imputation model. In the context of process factor analysis (PFA), we conducted a Monte Carlo simulation study to compare the performance of MI-FS to listwise deletion (LD), MI with manifest variables (MI-MV, which implements MI on both dependent variables and covariates), and partial MI with MVs (PMI-MV, which implements MI on covariates and handles missing dependent variables via full-information maximum likelihood) under different conditions. Across conditions, we found MI-based methods overall outperformed the LD; the MI-FS approach yielded lower root mean square errors (RMSEs) and higher coverage rates for auto-regression (AR) parameters compared to MI-MV; and the PMI-MV and MI-MV approaches yielded higher coverage rates for most parameters except AR parameters compared to MI-FS. These approaches were also compared using an empirical example investigating the relationships between negative affect and perceived stress over time. Recommendations on when and how to incorporate factor scores into MI processes were discussed.
UR - http://www.scopus.com/inward/record.url?scp=85198373776&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85198373776&partnerID=8YFLogxK
U2 - 10.1080/00273171.2024.2371816
DO - 10.1080/00273171.2024.2371816
M3 - Article
C2 - 38997153
AN - SCOPUS:85198373776
SN - 0027-3171
JO - Multivariate Behavioral Research
JF - Multivariate Behavioral Research
ER -