Multiple stiffening effects of nanoscale knobs on human red blood cells infected with Plasmodium falciparum malaria parasite

Yao Zhang, Changjin Huang, Sangtae Kim, Mahdi Golkaram, Matthew W.A. Dixon, Leann Tilley, Ju Li, Sulin Zhang, Subra Suresh

Research output: Contribution to journalArticlepeer-review

87 Scopus citations


During its asexual development within the red blood cell (RBC), Plasmodium falciparum (Pf), the most virulent human malaria parasite, exports proteins that modify the host RBC membrane. The attendant increase in cell stiffness and cytoadherence leads to sequestration of infected RBCs in microvasculature, which enables the parasite to evade the spleen, and leads to organ dysfunction in severe cases of malaria. Despite progress in understanding malaria pathogenesis, the molecular mechanisms responsible for the dramatic loss of deformability of Pf-infected RBCs have remained elusive. By recourse to a coarse-grained (CG) model that captures the molecular structures of Pf-infected RBC membrane, here we show that nanoscale surface protrusions, known as "knobs," introduce multiple stiffening mechanisms through composite strengthening, strain hardening, and knob density-dependent vertical coupling. On one hand, the knobs act as structural strengtheners for the spectrin network; on the other, the presence of knobs results in strain inhomogeneity in the spectrin network with elevated shear strain in the knob-free regions, which, given its strain-hardening property, effectively stiffens the network. From the trophozoite to the schizont stage that ensues within 24-48 h of parasite invasion into the RBC, the rise in the knob density results in the increased number of vertical constraints between the spectrin network and the lipid bilayer, which further stiffens the membrane. The shear moduli of Pf-infected RBCs predicted by the CG model at different stages of parasite maturation are in agreement with experimental results. In addition to providing a fundamental understanding of the stiffening mechanisms of Pf-infected RBCs, our simulation results suggest potential targets for antimalarial therapies.

Original languageEnglish (US)
Pages (from-to)6068-6073
Number of pages6
JournalProceedings of the National Academy of Sciences of the United States of America
Issue number19
StatePublished - May 12 2015

All Science Journal Classification (ASJC) codes

  • General


Dive into the research topics of 'Multiple stiffening effects of nanoscale knobs on human red blood cells infected with Plasmodium falciparum malaria parasite'. Together they form a unique fingerprint.

Cite this