Abstract
This paper presents an array of deformation‐dependent flow models of various porosities and permeabilities relevant to the characterization of naturally fractured reservoirs. A unified multiporosity multipermeability formulation is proposed as a generalization of the porosity‐ or permeability‐oriented models of specific degree. Some new relationships are identified in the parametric investigation for both single‐porosity and dual‐porosity models. A formula is derived to express Skempton's constant B by Biot's coefficient H and relative compressibility ϕ*. It is found that the recovery of the original expression for Skempton's constant B is largely dependent on the choice of ϕ*, representing relative compressibility. The dual‐porosity/dual‐permeability model is evaluated through an alternative finite element approximation. The deformation‐dependent fracture flow mechanism is introduced where the rock matrix possesses low permeability and fracture flow is dominant. A preliminary study of the reservoir simulation identifies the strong coupling between the fluid flow and solid deformation.
Original language | English (US) |
---|---|
Pages (from-to) | 1621-1633 |
Number of pages | 13 |
Journal | Water Resources Research |
Volume | 29 |
Issue number | 6 |
DOIs | |
State | Published - Jun 1993 |
All Science Journal Classification (ASJC) codes
- Water Science and Technology