Multiscale analysis of the effect of carbon nanotube (CNT) functionalization on damping characteristics of CNT-based composites

Ailin Liu, K. W. Wang, Charles E. Bakis

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

In this paper, the influence of carbon nanotube functionalization on interfacial shear strength and hence on damping characteristics of CNT-based polymeric composites is investigated with a multiscale model. The sequential multiscale approach consists of two parts. First, the interfacial shear strength between the functionalized nanotube and the polymer is calculated by simulating a CNT pull-out test using the molecular dynamics method. The strength values obtained from atomic simulation are then applied to a micromechanical damping model of a representative unit cell of a CNT/polymer composite under cyclic loading. The analysis results indicate that the nanotube functionalization increases the interfacial shear strength. The increased shear strength can either enhance or reduce the effective loss factor of the composite, depending on the operational stress range.

Original languageEnglish (US)
Title of host publicationActive and Passive Smart Structures and Integrated Systems 2010
EditionPART 1
DOIs
StatePublished - 2010
EventActive and Passive Smart Structures and Integrated Systems 2010 - San Diego, CA, United States
Duration: Mar 8 2010Mar 11 2010

Publication series

NameProceedings of SPIE - The International Society for Optical Engineering
NumberPART 1
Volume7643
ISSN (Print)0277-786X

Other

OtherActive and Passive Smart Structures and Integrated Systems 2010
Country/TerritoryUnited States
CitySan Diego, CA
Period3/8/103/11/10

All Science Journal Classification (ASJC) codes

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics
  • Applied Mathematics
  • Electrical and Electronic Engineering
  • Computer Science Applications

Fingerprint

Dive into the research topics of 'Multiscale analysis of the effect of carbon nanotube (CNT) functionalization on damping characteristics of CNT-based composites'. Together they form a unique fingerprint.

Cite this