@inproceedings{54fd560420004b3da6238c665ddbbf11,
title = "Multistatic passive coherent location using multilateration techniques",
abstract = "Passive Coherent Location (PCL) is a developing radar field, in which the system processes reflections from opportunistic illumination sources in the environment for detection and tracking. Many developments and improvements of PCL implement pseudo-monostatic and bistatic radar configurations; however, with the proliferation of commercial communication systems, the spectrally dense environment proves to be in favor of a multistatic PCL system. In the multistatic case, it can be shown that geolocation of a target is a unique extension of multilateration algorithms. In multilateration, the receiver location is unknown and calculated by exploiting the intersections of distances from receiver to transmitters; in multistatic PCL, an object location is unknown and the intersection of transmitter distance to receiver and reflection distance to receiver are utilized. Multilateration is a well-studied topic where there are many developed techniques that can be applied after the reflection distance is derived with ray tracing principles. The framework for a time-of-arrival based multistatic PCL is provided using time-difference-of-arrival (TDOA) as a measure of propagation time and path length. A nonlinear multilateration solver using a least means square algorithm calculates the geolocation of the object within a tolerable error. Using a frequency modulated (FM) test signal, simulated results show comparable results to a bistatic PCL system using angular measurements for geolocation. Furthermore, a multistatic multilateration system is more tolerant to timing errors compared to a bistatic system with angular inaccuracy. The developed multistatic PCL system is realized and verified using an FM signal.",
author = "Kaiser, {Sean A.} and Christianson, {Andrew J.} and Narayanan, {Ram M.}",
note = "Publisher Copyright: {\textcopyright} 2016 SPIE.; Radar Sensor Technology XX ; Conference date: 18-04-2016 Through 21-04-2016",
year = "2016",
doi = "10.1117/12.2224116",
language = "English (US)",
series = "Proceedings of SPIE - The International Society for Optical Engineering",
publisher = "SPIE",
editor = "Armin Doerry and Ranney, {Kenneth I.}",
booktitle = "Radar Sensor Technology XX",
address = "United States",
}