MUO16- Deposition methods of BiFeO3 thin films

M. D. Casper, M. D. Losego, S. M. Aygün, Jon-Paul Maria

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Bismuth iron oxide (BiFeO3 or BFO) is a particularly interesting multiferroic perovskite with ferroelectric and antiferromagnetic transition temperatures significantly above room temperature. In this work, BiFeO 3 films are synthesized by a chemical solution deposition (CSD) sol-gel process on platinized silicon substrates and by physical vapor deposition (PVD) through RF-sputtering on iridium-sapphire substrates. The crystallization behavior and phase assemblage of these films was examined by X-ray diffraction (XRD). Analysis of CSD-prepared films revealed that a 0.25 M solution with 5% excess bismuth annealed at 550 °C in air produced polycrystalline films with the lowest occurrence of non-perovskite Bismuth iron oxide phases. For films made by PVD, the absence of oxygen during sputtering was found to enhance phase purity, and using a target with 7% excess bismuth allowed phase-pure films to be prepared at 600 °C. Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM) were used to investigate the microstructure of the BiFeO3 films. Porosity was found to be a significant problem in CSD-prepared films that were dried on a hotplate at 300 °C before annealing. Lowering the temperature of this drying step or omitting it was found to decrease root-mean-square (rms) surface roughness. The microstructure of the sputtered films was found to be dense, uniform, and crack-free a surface roughness of to 16 nm for BiFeO3 sputtered at 600 °C.

Original languageEnglish (US)
Title of host publication17th IEEE International Symposium on the Applications of Ferroelectrics, ISAF 2008
Volume3
DOIs
StatePublished - Dec 1 2008
Event17th IEEE International Symposium on the Applications of Ferroelectrics, ISAF 2008 - Santa Fe, NM, United States
Duration: Feb 23 2008Feb 28 2008

Other

Other17th IEEE International Symposium on the Applications of Ferroelectrics, ISAF 2008
Country/TerritoryUnited States
CitySanta Fe, NM
Period2/23/082/28/08

All Science Journal Classification (ASJC) codes

  • Electrical and Electronic Engineering
  • Electronic, Optical and Magnetic Materials

Fingerprint

Dive into the research topics of 'MUO16- Deposition methods of BiFeO3 thin films'. Together they form a unique fingerprint.

Cite this