TY - JOUR
T1 - Muscle damage impairs insulin stimulation of IRS-1, PI 3-kinase, and Akt-kinase in human skeletal muscle
AU - Del Aguila, Luis F.
AU - Krishnan, Raj K.
AU - Ulbrecht, Jan S.
AU - Farrell, Peter A.
AU - Correll, Pamela H.
AU - Lang, Charles H.
AU - Zierath, Juleen R.
AU - Kirwan, John P.
PY - 2000
Y1 - 2000
N2 - Physiological stress associated with muscle damage results in systemic insulin resistance. However, the mechanisms responsible for the insulin resistance are not known; therefore, the present study was conducted to elucidate the molecular mechanisms associated with insulin resistance after muscle damage. Muscle biopsies were obtained before (base) and at 1 h during a hyperinsulinemic-euglycemic clamp (40 mU · kg-1 · min-1) in eight young (age 24 ± 1 yr) healthy sedentary (maximal O2 consumption, 49.7 ± 2.4 ml · kg-1 · min-1) males before and 24 h after eccentric exercise (ECC)-induced muscle damage. To determine the role of cytokines in ECC-induced insulin resistance, venous blood samples were obtained before (control) and 24 h after ECC to evaluate ex vivo endotoxin-induced mononuclear cell secretion of tumor necrosis factor (TNF)-α, interleukin (IL)-6, and IL-1β. Glucose disposal was 19% lower after ECC (P < 0.05). Insulin-stimulated insulin receptor substrate (IRS)-1 tyrosine phosphorylation was 45% lower after ECC (P < 0.05). Insulin-stimulated phosphatidylinositol (PI) 3-kinase, Akt (protein kinase B) serine phosphorylation, and Akt activity were reduced 34, 65, and 20%, respectively, after ECC (P < 0.05). TNF-α, but not IL-6 or IL-1β production, increased 2.4-fold 24 h after ECC (P < 0.05). TNF-α production was positively correlated with reduced insulin action on PI 3-kinase (r = 0.77, P = 0.04). In summary, the physiological stress associated with muscle damage impairs insulin stimulation of IRS-1, PI 3-kinase, and Akt-kinase, presumably leading to decreased insulin-mediated glucose uptake. Although more research is needed on the potential role for TNF-α inhibition of insulin action, elevated TNF-α production after muscle damage may impair insulin signal transduction.
AB - Physiological stress associated with muscle damage results in systemic insulin resistance. However, the mechanisms responsible for the insulin resistance are not known; therefore, the present study was conducted to elucidate the molecular mechanisms associated with insulin resistance after muscle damage. Muscle biopsies were obtained before (base) and at 1 h during a hyperinsulinemic-euglycemic clamp (40 mU · kg-1 · min-1) in eight young (age 24 ± 1 yr) healthy sedentary (maximal O2 consumption, 49.7 ± 2.4 ml · kg-1 · min-1) males before and 24 h after eccentric exercise (ECC)-induced muscle damage. To determine the role of cytokines in ECC-induced insulin resistance, venous blood samples were obtained before (control) and 24 h after ECC to evaluate ex vivo endotoxin-induced mononuclear cell secretion of tumor necrosis factor (TNF)-α, interleukin (IL)-6, and IL-1β. Glucose disposal was 19% lower after ECC (P < 0.05). Insulin-stimulated insulin receptor substrate (IRS)-1 tyrosine phosphorylation was 45% lower after ECC (P < 0.05). Insulin-stimulated phosphatidylinositol (PI) 3-kinase, Akt (protein kinase B) serine phosphorylation, and Akt activity were reduced 34, 65, and 20%, respectively, after ECC (P < 0.05). TNF-α, but not IL-6 or IL-1β production, increased 2.4-fold 24 h after ECC (P < 0.05). TNF-α production was positively correlated with reduced insulin action on PI 3-kinase (r = 0.77, P = 0.04). In summary, the physiological stress associated with muscle damage impairs insulin stimulation of IRS-1, PI 3-kinase, and Akt-kinase, presumably leading to decreased insulin-mediated glucose uptake. Although more research is needed on the potential role for TNF-α inhibition of insulin action, elevated TNF-α production after muscle damage may impair insulin signal transduction.
UR - http://www.scopus.com/inward/record.url?scp=0033854209&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0033854209&partnerID=8YFLogxK
U2 - 10.1152/ajpendo.2000.279.1.e206
DO - 10.1152/ajpendo.2000.279.1.e206
M3 - Article
C2 - 10893341
AN - SCOPUS:0033854209
SN - 0193-1849
VL - 279
SP - E206-E212
JO - American Journal of Physiology - Endocrinology and Metabolism
JF - American Journal of Physiology - Endocrinology and Metabolism
IS - 1 42-1
ER -