TY - JOUR
T1 - Muscle fatigue increases beta-band coherence between the firing times of simultaneously active motor units in the first dorsal interosseous muscle
AU - McManus, Lara
AU - Hu, Xiaogang
AU - Rymer, William Z.
AU - Suresh, Nina L.
AU - Lowery, Madeleine M.
N1 - Publisher Copyright:
© 2016 the American Physiological Society.
PY - 2016/6/1
Y1 - 2016/6/1
N2 - Synchronization between the firing times of simultaneously active motor units (MUs) is generally assumed to increase during fatiguing contractions. To date, however, estimates of MU synchronization have relied on indirect measures, derived from surface electromyographic (EMG) interference signals. This study used intramuscular coherence to investigate the correlation between MU discharges in the first dorsal interosseous muscle during and immediately following a submaximal fatiguing contraction, and after rest. Coherence between composite MU spike trains, derived from decomposed surface EMG, were examined in the delta (1-4 Hz), alpha (8-12 Hz), beta (15-30 Hz), and gamma (30-60 Hz) frequency band ranges. A significant increase in MU coherence was observed in the delta, alpha, and beta frequency bands postfatigue. In addition, wavelet coherence revealed a tendency for delta-, alpha-, and beta-band coherence to increase during the fatiguing contraction, with subjects exhibiting low initial coherence values displaying the greatest relative increase. This was accompanied by an increase in MU short-term synchronization and a decline in mean firing rate of the majority of MUs detected during the sustained contraction. A model of the motoneuron pool and surface EMG was used to investigate factors influencing the coherence estimate. Simulation results indicated that changes in motoneuron inhibition and firing rates alone could not directly account for increased beta-band coherence postfatigue. The observed increase is, therefore, more likely to arise from an increase in the strength of correlated inputs to MUs as the muscle fatigues.
AB - Synchronization between the firing times of simultaneously active motor units (MUs) is generally assumed to increase during fatiguing contractions. To date, however, estimates of MU synchronization have relied on indirect measures, derived from surface electromyographic (EMG) interference signals. This study used intramuscular coherence to investigate the correlation between MU discharges in the first dorsal interosseous muscle during and immediately following a submaximal fatiguing contraction, and after rest. Coherence between composite MU spike trains, derived from decomposed surface EMG, were examined in the delta (1-4 Hz), alpha (8-12 Hz), beta (15-30 Hz), and gamma (30-60 Hz) frequency band ranges. A significant increase in MU coherence was observed in the delta, alpha, and beta frequency bands postfatigue. In addition, wavelet coherence revealed a tendency for delta-, alpha-, and beta-band coherence to increase during the fatiguing contraction, with subjects exhibiting low initial coherence values displaying the greatest relative increase. This was accompanied by an increase in MU short-term synchronization and a decline in mean firing rate of the majority of MUs detected during the sustained contraction. A model of the motoneuron pool and surface EMG was used to investigate factors influencing the coherence estimate. Simulation results indicated that changes in motoneuron inhibition and firing rates alone could not directly account for increased beta-band coherence postfatigue. The observed increase is, therefore, more likely to arise from an increase in the strength of correlated inputs to MUs as the muscle fatigues.
UR - http://www.scopus.com/inward/record.url?scp=84984856544&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84984856544&partnerID=8YFLogxK
U2 - 10.1152/jn.00097.2016
DO - 10.1152/jn.00097.2016
M3 - Article
C2 - 26984420
AN - SCOPUS:84984856544
SN - 0022-3077
VL - 115
SP - 2830
EP - 2839
JO - Journal of neurophysiology
JF - Journal of neurophysiology
IS - 6
ER -