TY - JOUR
T1 - Mutational analysis of photosystem I polypeptides
T2 - Role of PsaD and the LYSYL 106 residue in the reductase activity of photosystem I
AU - Chitnis, Vaishali P.
AU - Jung, Yean Sung
AU - Albeet, Lee
AU - Golbeck, John H.
AU - Chitnis, Parag R.
N1 - Copyright:
Copyright 2017 Elsevier B.V., All rights reserved.
PY - 1996
Y1 - 1996
N2 - The ADC4 mutant of the cyanobacterium Synechocystis sp. PCC 6803 was studied to determine the structural and functional consequences of the absence of PsaD in photosystem I. Isolated ADC4 membranes were shown to be deficient in ferredoxin-mediated NADP+ reduction, even though charge separation between P700 and FA/FB occurred with high efficiency. Unlike the wild type, FB became preferentially photoreduced when ADC4 membranes were illuminated at 15 K, and the EPR line shapes were relatively broad. Membrane fragments oriented in two dimensions on thin mylar films showed that the g tensor axes of FA- and FB- were identical in the ADC4 and wild type strains, implying that PsaC is oriented similarly on the reaction center. PsaC and the FA/FB iron-sulfur clusters are lost more readily from the ADC4 membranes after treatment with Triton X-100 or chaotropic agents, implying a stabilizing role for PsaD. The specific role of Lys106 of PsaD, which can be crosslinked to Glu93 of ferredoxin (Lelong et al. (1994) J. Biol. Chem. 269, 10034-10039), was probed by site-directed mutagenesis. Chemical cross-linking and protease treatment experiments did not reveal any drastic alterations in the conformation of the mutant PsaD proteins. The EPR spectra of FA and FB in membranes of the Lys106 mutants were similar to those of the wild type. Membranes of all Lys106 mutants showed wild type rates of flavodoxin reduction and flavodoxin-mediated NADP+ reduction, but had 10-54% decrease in the ferredoxinmediated NADP+ reduction rates. This implies that Lys106 is a dispensable component of the docking site on the reducing side of photosystem I and an ionic interaction between Lys106 of PsaD and Glu93 of ferredoxin is not essential for electron transfer to ferredoxin. These results demonstrate that PsaD serves distinct roles in modulating the EPR spectral characteristics of FA and FB, in stabilizing PsaC on the reaction center, and in facilitating ferredoxin-mediated NADP+ photoreduction on the reducing side of photosystem I.
AB - The ADC4 mutant of the cyanobacterium Synechocystis sp. PCC 6803 was studied to determine the structural and functional consequences of the absence of PsaD in photosystem I. Isolated ADC4 membranes were shown to be deficient in ferredoxin-mediated NADP+ reduction, even though charge separation between P700 and FA/FB occurred with high efficiency. Unlike the wild type, FB became preferentially photoreduced when ADC4 membranes were illuminated at 15 K, and the EPR line shapes were relatively broad. Membrane fragments oriented in two dimensions on thin mylar films showed that the g tensor axes of FA- and FB- were identical in the ADC4 and wild type strains, implying that PsaC is oriented similarly on the reaction center. PsaC and the FA/FB iron-sulfur clusters are lost more readily from the ADC4 membranes after treatment with Triton X-100 or chaotropic agents, implying a stabilizing role for PsaD. The specific role of Lys106 of PsaD, which can be crosslinked to Glu93 of ferredoxin (Lelong et al. (1994) J. Biol. Chem. 269, 10034-10039), was probed by site-directed mutagenesis. Chemical cross-linking and protease treatment experiments did not reveal any drastic alterations in the conformation of the mutant PsaD proteins. The EPR spectra of FA and FB in membranes of the Lys106 mutants were similar to those of the wild type. Membranes of all Lys106 mutants showed wild type rates of flavodoxin reduction and flavodoxin-mediated NADP+ reduction, but had 10-54% decrease in the ferredoxinmediated NADP+ reduction rates. This implies that Lys106 is a dispensable component of the docking site on the reducing side of photosystem I and an ionic interaction between Lys106 of PsaD and Glu93 of ferredoxin is not essential for electron transfer to ferredoxin. These results demonstrate that PsaD serves distinct roles in modulating the EPR spectral characteristics of FA and FB, in stabilizing PsaC on the reaction center, and in facilitating ferredoxin-mediated NADP+ photoreduction on the reducing side of photosystem I.
UR - http://www.scopus.com/inward/record.url?scp=0029888079&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0029888079&partnerID=8YFLogxK
U2 - 10.1074/jbc.271.20.11772
DO - 10.1074/jbc.271.20.11772
M3 - Article
C2 - 8662633
AN - SCOPUS:0029888079
SN - 0021-9258
VL - 271
SP - 11772
EP - 11780
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
IS - 20
ER -