TY - JOUR
T1 - N-doping and coalescence of carbon nanotubes
T2 - Synthesis and electronic properties
AU - Terrones, M.
AU - Ajayan, P. M.
AU - Banhart, F.
AU - Blase, X.
AU - Carroll, D. L.
AU - Charlier, J. C.
AU - Czerw, R.
AU - Foley, B.
AU - Grobert, N.
AU - Kamalakaran, R.
AU - Kohler-Redlich, P.
AU - Rühle, M.
AU - Seeger, T.
AU - Terrones, H.
PY - 2002/3
Y1 - 2002/3
N2 - Self-assembly pyrolytic routes to large arrays (< 2.5 cm 2) of aligned CNx nanotubes (15-80 nm OD and < 100 μm in length) are presented. The method involves the thermolysis of ferrocene/melamine mixtures (5 : 95) at 900-1000 °C in the presence of Ar. Electron energy loss spectroscopy (EELS) reveals that the N content varies from 2%-10%, and can be bonded to C in two different fashions (double-bonded and triple-bonded nitrogen). The electronic densities of states (DOS) of these CNx nanotubes, using scanning tunneling spectroscopy (STS), are presented. The doped nanotubes exhibit strong features in the conduction band close to the Fermi level (0.18 eV). Using tight-binding and ab initio calculations, we confirm that pyridine-like (double-bonded) N is responsible for introducing donor states close to the Fermi Level. These electron-rich structures are the first example of n-type nanotubes. Finally, it will be shown that moderate electron irradiation at 700-800 °C is capable of coalescing single-walled nanotubes (SWNTs). The process has also been studied using tight-binding molecular dynamics (TBMD). Vacancies induce the coalescence via a zipper-like mechanism, which has also been observed experimentally. These vacancies trigger the organization of atoms on the tube lattices within adjacent tubes. These results pave the way to the fabrication of nanotube heterojunctions, robust composites, contacts, nanocircuits and strong 3D composites using i N-doped tubes as well as SWNTs.
AB - Self-assembly pyrolytic routes to large arrays (< 2.5 cm 2) of aligned CNx nanotubes (15-80 nm OD and < 100 μm in length) are presented. The method involves the thermolysis of ferrocene/melamine mixtures (5 : 95) at 900-1000 °C in the presence of Ar. Electron energy loss spectroscopy (EELS) reveals that the N content varies from 2%-10%, and can be bonded to C in two different fashions (double-bonded and triple-bonded nitrogen). The electronic densities of states (DOS) of these CNx nanotubes, using scanning tunneling spectroscopy (STS), are presented. The doped nanotubes exhibit strong features in the conduction band close to the Fermi level (0.18 eV). Using tight-binding and ab initio calculations, we confirm that pyridine-like (double-bonded) N is responsible for introducing donor states close to the Fermi Level. These electron-rich structures are the first example of n-type nanotubes. Finally, it will be shown that moderate electron irradiation at 700-800 °C is capable of coalescing single-walled nanotubes (SWNTs). The process has also been studied using tight-binding molecular dynamics (TBMD). Vacancies induce the coalescence via a zipper-like mechanism, which has also been observed experimentally. These vacancies trigger the organization of atoms on the tube lattices within adjacent tubes. These results pave the way to the fabrication of nanotube heterojunctions, robust composites, contacts, nanocircuits and strong 3D composites using i N-doped tubes as well as SWNTs.
UR - http://www.scopus.com/inward/record.url?scp=18344375460&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=18344375460&partnerID=8YFLogxK
U2 - 10.1007/s003390201278
DO - 10.1007/s003390201278
M3 - Article
AN - SCOPUS:18344375460
SN - 0947-8396
VL - 74
SP - 355
EP - 361
JO - Applied Physics A: Materials Science and Processing
JF - Applied Physics A: Materials Science and Processing
IS - 3
ER -