TY - GEN
T1 - Name-ethnicity classification and ethnicity-sensitive name matching
AU - Treeratpituk, Pucktada
AU - Giles, C. Lee
PY - 2012/11/7
Y1 - 2012/11/7
N2 - Personal names are important and common information in many data sources, ranging from social networks and news articles to patient records and scientific documents. They are often used as queries for retrieving records and also as key information for linking documents from multiple sources. Matching personal names can be challenging due to variations in spelling and various formatting of names. While many approximated name matching techniques have been proposed, most are generic string-matching algorithms. Unlike other types of proper names, personal names are highly cultural. Many ethnicities have their own unique naming systems and identifiable characteristics. In this paper we explore such relationships between ethnicities and personal names to improve the name matching performance. First, we propose a name-ethnicity classifier based on the multinomial logistic regression. Our model can effectively identify name-ethnicity from personal names in Wikipedia, which we use to define name-ethnicity, to within 85% accuracy. Next, we propose a novel alignment-based name matching algorithm, based on Smith-Waterman algorithm and logistic regression. Different name matching models are then trained for different name-ethnicity groups. Our preliminary experimental result on DBLP's disambiguated author dataset yields a performance of 99% precision and 89% recall. Surprisingly, textual features carry more weight than phonetic ones in name-ethnicity classification.
AB - Personal names are important and common information in many data sources, ranging from social networks and news articles to patient records and scientific documents. They are often used as queries for retrieving records and also as key information for linking documents from multiple sources. Matching personal names can be challenging due to variations in spelling and various formatting of names. While many approximated name matching techniques have been proposed, most are generic string-matching algorithms. Unlike other types of proper names, personal names are highly cultural. Many ethnicities have their own unique naming systems and identifiable characteristics. In this paper we explore such relationships between ethnicities and personal names to improve the name matching performance. First, we propose a name-ethnicity classifier based on the multinomial logistic regression. Our model can effectively identify name-ethnicity from personal names in Wikipedia, which we use to define name-ethnicity, to within 85% accuracy. Next, we propose a novel alignment-based name matching algorithm, based on Smith-Waterman algorithm and logistic regression. Different name matching models are then trained for different name-ethnicity groups. Our preliminary experimental result on DBLP's disambiguated author dataset yields a performance of 99% precision and 89% recall. Surprisingly, textual features carry more weight than phonetic ones in name-ethnicity classification.
UR - http://www.scopus.com/inward/record.url?scp=84868293536&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84868293536&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:84868293536
SN - 9781577355687
T3 - Proceedings of the National Conference on Artificial Intelligence
SP - 1141
EP - 1147
BT - AAAI-12 / IAAI-12 - Proceedings of the 26th AAAI Conference on Artificial Intelligence and the 24th Innovative Applications of Artificial Intelligence Conference
T2 - 26th AAAI Conference on Artificial Intelligence and the 24th Innovative Applications of Artificial Intelligence Conference, AAAI-12 / IAAI-12
Y2 - 22 July 2012 through 26 July 2012
ER -