Nano- and micro-indentation testing of sintered UO 2 fuel pellets with controlled microstructure and stoichiometry

Bowen Gong, David Frazer, Tiankai Yao, Peter Hosemann, Michael Tonks, Jie Lian

Research output: Contribution to journalArticlepeer-review

35 Scopus citations

Abstract

Dense nanocrystalline and microcrystalline UO 2 samples with controlled grain structure and stoichiometry were prepared by high energy ball milling and spark plasma sintering (SPS). Nano-indentation and micro-indentation testing were performed at different temperatures of 25 °C, 300 °C, and 600 °C in order to study the mechanical properties of the sintered fuels as functions of grain structure and temperature. Nanocrystalline UO 2 display higher hardness than microcrystalline counterpart, consistent with the Hall-Petch strengthening mechanism. Greater Young's modulus and fracture toughness are also identified for the nanocrystalline UO 2 , and hardness and Young's modulus decrease with temperature, suggesting better ductility of oxide fuels at high temperature and small length scale. Hyper-stoichiometric UO 2 specimen displays higher hardness and fracture toughness than stoichiometric UO 2 , due to the impediment of the crack propagation by the oxygen interstitial atoms. These results are useful in understanding the mechanical properties of the high burn-up structure (HBS) formed in nuclear fuels during reactor operation, and also provide critical experimental data as the input for the development and validation of the MARMOT fracture model of nuclear fuels.

Original languageEnglish (US)
Pages (from-to)169-177
Number of pages9
JournalJournal of Nuclear Materials
Volume516
DOIs
StatePublished - Apr 1 2019

All Science Journal Classification (ASJC) codes

  • Nuclear and High Energy Physics
  • General Materials Science
  • Nuclear Energy and Engineering

Fingerprint

Dive into the research topics of 'Nano- and micro-indentation testing of sintered UO 2 fuel pellets with controlled microstructure and stoichiometry'. Together they form a unique fingerprint.

Cite this