TY - JOUR
T1 - Nanometals
T2 - Identifying the onset of metallic relaxation dynamics in monolayer-protected gold clusters using femtosecond spectroscopy
AU - Yi, Chongyue
AU - Zheng, Hongjun
AU - Tvedte, Laura M.
AU - Ackerson, Christopher J.
AU - Knappenberger, Kenneth L.
N1 - Publisher Copyright:
© 2015 American Chemical Society.
PY - 2015/3/19
Y1 - 2015/3/19
N2 - Electronic relaxation dynamics were studied for a series of gold monolayer-protected clusters (MPCs) whose sizes ranged from 1.5 to 2.4 nm. Au96(mMBA)42, Au102(pMBA)44, Au115(pMBA)49, Au117(mMBA)50, Au144(pMBA)60, Au250(pMBA)98, and Au459(pMBA)170 (pMBA = para-mercaptobenzoic acid; mMBA = meta-mercaptobenzoic acid) were selected for study because they bridged the expected transition from nonmetallic to metallic electron behavior. Excitation-pulse-energy-dependent measurements confirmed Au144(pMBA)60 (1.8 nm) as the smallest MPC to exhibit metallic behavior, with a quantifiable electron-phonon coupling constant of (1.63 ± 0.25) × 1016 W m-3 K-1. Smaller, nonmetallic MPCs exhibited nanocluster-specific transient extinction spectra characteristic of transitions between discrete quantum-confined electronic states. Volume-dependent electronic relaxation dynamics for ≤1.8 nm MPCs were observed and attributed to a combination of large energy differences between electronic states and phonon frequencies and spatial separation of photoexcited electrons and holes. Evidence for the latter was obtained by substituting mMBA for pMBA as a passivating ligand, which resulted in a 4-fold increase in the relaxation rate constant.
AB - Electronic relaxation dynamics were studied for a series of gold monolayer-protected clusters (MPCs) whose sizes ranged from 1.5 to 2.4 nm. Au96(mMBA)42, Au102(pMBA)44, Au115(pMBA)49, Au117(mMBA)50, Au144(pMBA)60, Au250(pMBA)98, and Au459(pMBA)170 (pMBA = para-mercaptobenzoic acid; mMBA = meta-mercaptobenzoic acid) were selected for study because they bridged the expected transition from nonmetallic to metallic electron behavior. Excitation-pulse-energy-dependent measurements confirmed Au144(pMBA)60 (1.8 nm) as the smallest MPC to exhibit metallic behavior, with a quantifiable electron-phonon coupling constant of (1.63 ± 0.25) × 1016 W m-3 K-1. Smaller, nonmetallic MPCs exhibited nanocluster-specific transient extinction spectra characteristic of transitions between discrete quantum-confined electronic states. Volume-dependent electronic relaxation dynamics for ≤1.8 nm MPCs were observed and attributed to a combination of large energy differences between electronic states and phonon frequencies and spatial separation of photoexcited electrons and holes. Evidence for the latter was obtained by substituting mMBA for pMBA as a passivating ligand, which resulted in a 4-fold increase in the relaxation rate constant.
UR - http://www.scopus.com/inward/record.url?scp=84925237849&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84925237849&partnerID=8YFLogxK
U2 - 10.1021/jp512112z
DO - 10.1021/jp512112z
M3 - Article
AN - SCOPUS:84925237849
SN - 1932-7447
VL - 119
SP - 6307
EP - 6313
JO - Journal of Physical Chemistry C
JF - Journal of Physical Chemistry C
IS - 11
ER -