TY - JOUR
T1 - Nanoscale piezoelectric response across a single antiparallel ferroelectric domain wall
AU - Scrymgeour, David A.
AU - Gopalan, Venkatraman
PY - 2005/7/1
Y1 - 2005/7/1
N2 - Experiments and three-dimensional numerical modeling of nanoscale piezoelectric response across a single domain wall in ferroelectric lithium niobate are presented. Surprising asymmetry in the local electromechanical response across a single antiparallel ferroelectric domain wall is reported. Piezoelectric force microscopy is used to investigate both the in-plane and out-of- plane electromechanical signals around domain walls in congruent and near-stoichiometric lithium niobate. The observed asymmetry is shown to have a strong correlation to crystal stoichiometry, suggesting defect-domain-wall interactions. A defect-dipole model is proposed. The finite-element method is used to simulate the electromechanical processes at the wall and reconstruct the images. For the near-stoichiometric composition, good agreement is found in both form and magnitude. Some discrepancy remains between the experimental and modeling widths of the imaged effects across a wall. This is analyzed from the perspective of possible electrostatic contributions to the imaging process, as well as local changes in the material properties in the vicinity of the wall.
AB - Experiments and three-dimensional numerical modeling of nanoscale piezoelectric response across a single domain wall in ferroelectric lithium niobate are presented. Surprising asymmetry in the local electromechanical response across a single antiparallel ferroelectric domain wall is reported. Piezoelectric force microscopy is used to investigate both the in-plane and out-of- plane electromechanical signals around domain walls in congruent and near-stoichiometric lithium niobate. The observed asymmetry is shown to have a strong correlation to crystal stoichiometry, suggesting defect-domain-wall interactions. A defect-dipole model is proposed. The finite-element method is used to simulate the electromechanical processes at the wall and reconstruct the images. For the near-stoichiometric composition, good agreement is found in both form and magnitude. Some discrepancy remains between the experimental and modeling widths of the imaged effects across a wall. This is analyzed from the perspective of possible electrostatic contributions to the imaging process, as well as local changes in the material properties in the vicinity of the wall.
UR - http://www.scopus.com/inward/record.url?scp=33749159037&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=33749159037&partnerID=8YFLogxK
U2 - 10.1103/PhysRevB.72.024103
DO - 10.1103/PhysRevB.72.024103
M3 - Article
AN - SCOPUS:33749159037
SN - 1098-0121
VL - 72
JO - Physical Review B - Condensed Matter and Materials Physics
JF - Physical Review B - Condensed Matter and Materials Physics
IS - 2
M1 - 024103
ER -