Abstract
To exploit the full potential of radio measurements of cosmic-ray air showers at MHz frequencies, a detector timing synchronization within 1 ns is needed. Large distributed radio detector arrays such as the Auger Engineering Radio Array (AERA) rely on timing via the Global Positioning System (GPS) for the synchronization of individual detector station clocks. Unfortunately, GPS timing is expected to have an accuracy no better than about 5 ns. In practice, in particular in AERA, the GPS clocks exhibit drifts on the order of tens of ns. We developed a technique to correct for the GPS drifts, and an independent method is used to cross-check that indeed we reach a nanosecond-scale timing accuracy by this correction. First, we operate a "beacon transmitter" which emits defined sine waves detected by AERA antennas recorded within the physics data. The relative phasing of these sine waves can be used to correct for GPS clock drifts. In addition to this, we observe radio pulses emitted by commercial airplanes, the position of which we determine in real time from Automatic Dependent Surveillance Broadcasts intercepted with a software-defined radio. From the known source location and the measured arrival times of the pulses we determine relative timing offsets between radio detector stations. We demonstrate with a combined analysis that the two methods give a consistent timing calibration with an accuracy of 2 ns or better. Consequently, the beacon method alone can be used in the future to continuously determine and correct for GPS clock drifts in each individual event measured by AERA.
Original language | English (US) |
---|---|
Article number | P01018 |
Journal | Journal of Instrumentation |
Volume | 11 |
Issue number | 1 |
DOIs | |
State | Published - Jan 29 2016 |
All Science Journal Classification (ASJC) codes
- Instrumentation
- Mathematical Physics
Access to Document
Other files and links
Fingerprint
Dive into the research topics of 'Nanosecond-level time synchronization of autonomous radio detector stations for extensive air showers'. Together they form a unique fingerprint.Cite this
- APA
- Author
- BIBTEX
- Harvard
- Standard
- RIS
- Vancouver
}
In: Journal of Instrumentation, Vol. 11, No. 1, P01018, 29.01.2016.
Research output: Contribution to journal › Article › peer-review
TY - JOUR
T1 - Nanosecond-level time synchronization of autonomous radio detector stations for extensive air showers
AU - Aab, A.
AU - Abreu, P.
AU - Aglietta, M.
AU - Ahn, E. J.
AU - Al Samarai, I.
AU - Albuquerque, I. F.M.
AU - Allekotte, I.
AU - Allison, P.
AU - Almela, A.
AU - Alvarez Castillo, J.
AU - Alvarez-Muñiz, J.
AU - Alves Batista, R.
AU - Ambrosio, M.
AU - Aminaei, A.
AU - Anastasi, G. A.
AU - Anchordoqui, L.
AU - Andringa, S.
AU - Aramo, C.
AU - Arqueros, F.
AU - Arsene, N.
AU - Asorey, H.
AU - Assis, P.
AU - Aublin, J.
AU - Avila, G.
AU - Awal, N.
AU - Badescu, A. M.
AU - Baus, C.
AU - Beatty, J. J.
AU - Becker, K. H.
AU - Bellido, J. A.
AU - Berat, C.
AU - Bertaina, M. E.
AU - Bertou, X.
AU - Biermann, P. L.
AU - Billoir, P.
AU - Blaess, S. G.
AU - Blanco, A.
AU - Blanco, M.
AU - Blazek, J.
AU - Bleve, C.
AU - Blümer, H.
AU - Bohácová, M.
AU - Boncioli, D.
AU - Bonifazi, C.
AU - Borodai, N.
AU - Brack, J.
AU - Brancus, I.
AU - Bretz, T.
AU - Bridgeman, A.
AU - Brogueira, P.
AU - Buchholz, P.
AU - Bueno, A.
AU - Buitink, S.
AU - Buscemi, M.
AU - Caballero-Mora, K. S.
AU - Caccianiga, B.
AU - Caccianiga, L.
AU - Candusso, M.
AU - Caramete, L.
AU - Caruso, R.
AU - Castellina, A.
AU - Cataldi, G.
AU - Cazon, L.
AU - Cester, R.
AU - Chavez, A. G.
AU - Chiavassa, A.
AU - Chinellato, J. A.
AU - Chudoba, J.
AU - Cilmo, M.
AU - Clay, R. W.
AU - Cocciolo, G.
AU - Colalillo, R.
AU - Coleman, A.
AU - Collica, L.
AU - Coluccia, M. R.
AU - Conceição, R.
AU - Contreras, F.
AU - Cooper, M. J.
AU - Cordier, A.
AU - Coutu, S.
AU - Covault, C. E.
AU - Cronin, J.
AU - Dallier, R.
AU - Daniel, B.
AU - Dasso, S.
AU - Daumiller, K.
AU - Dawson, B. R.
AU - De Almeida, R. M.
AU - De Jong, S. J.
AU - De Mauro, G.
AU - De Mello Neto, J. R.T.
AU - De Mitri, I.
AU - De Oliveira, J.
AU - De Souza, V.
AU - Del Peral, L.
AU - Deligny, O.
AU - Dhital, N.
AU - Di Giulio, C.
AU - Di Matteo, A.
AU - Diaz, J. C.
AU - Díaz Castro, M. L.
AU - Diogo, F.
AU - Dobrigkeit, C.
AU - Docters, W.
AU - D'Olivo, J. C.
AU - Dorofeev, A.
AU - Dorosti Hasankiadeh, Q.
AU - Dos Anjos, R. C.
AU - Dova, M. T.
AU - Ebr, J.
AU - Engel, R.
AU - Erdmann, M.
AU - Erfani, M.
AU - Escobar, C. O.
AU - Eser, J.
AU - Espadanal, J.
AU - Etchegoyen, A.
AU - Falcke, H.
AU - Fang, K.
AU - Farrar, G.
AU - Fauth, A. C.
AU - Fazzini, N.
AU - Ferguson, A. P.
AU - Fick, B.
AU - Figueira, J. M.
AU - Filevich, A.
AU - Filipcic, A.
AU - Fratu, O.
AU - Freire, M. M.
AU - Fujii, T.
AU - García, B.
AU - García-Gámez, D.
AU - Garcia-Pinto, D.
AU - Gate, F.
AU - Gemmeke, H.
AU - Gherghel-Lascu, A.
AU - Ghia, P. L.
AU - Giaccari, U.
AU - Giammarchi, M.
AU - Giller, M.
AU - Glas, D.
AU - Glaser, C.
AU - Glass, H.
AU - Golup, G.
AU - Gómez Berisso, M.
AU - Gómez Vitale, P. F.
AU - González, N.
AU - Gookin, B.
AU - Gordon, J.
AU - Gorgi, A.
AU - Gorham, P.
AU - Gouffon, P.
AU - Griffith, N.
AU - Grillo, A. F.
AU - Grubb, T. D.
AU - Guarino, F.
AU - Guedes, G. P.
AU - Hampel, M. R.
AU - Hansen, P.
AU - Harari, D.
AU - Harrison, T. A.
AU - Hartmann, S.
AU - Harton, J. L.
AU - Haungs, A.
AU - Hebbeker, T.
AU - Heck, D.
AU - Heimann, P.
AU - Hervé, A. E.
AU - Hill, G. C.
AU - Hojvat, C.
AU - Hollon, N.
AU - Holt, E.
AU - Homola, P.
AU - Hörandel, J. R.
AU - Horvath, P.
AU - Hrabovský, M.
AU - Huber, D.
AU - Huege, T.
AU - Insolia, A.
AU - Isar, P. G.
AU - Jandt, I.
AU - Jansen, S.
AU - Jarne, C.
AU - Johnsen, J. A.
AU - Josebachuili, M.
AU - Kääpä, A.
AU - Kambeitz, O.
AU - Kampert, K. H.
AU - Kasper, P.
AU - Katkov, I.
AU - Keilhauer, B.
AU - Kemp, E.
AU - Kieckhafer, R. M.
AU - Klages, H. O.
AU - Kleifges, M.
AU - Kleinfeller, J.
AU - Krause, R.
AU - Krohm, N.
AU - Kuempel, D.
AU - Kukec Mezek, G.
AU - Kunka, N.
AU - Kuotb Awad, A. W.
AU - LaHurd, D.
AU - Lang, A.
AU - Latronico, L.
AU - Lauer, R.
AU - Lauscher, M.
AU - Lautridou, P.
AU - Le Coz, S.
AU - Lebrun, D.
AU - Lebrun, P.
AU - Leigui De Oliveira, M. A.
AU - Letessier-Selvon, A.
AU - Lhenry-Yvon, I.
AU - Link, K.
AU - Lopes, L.
AU - López, R.
AU - López Casado, A.
AU - Louedec, K.
AU - Lucero, A.
AU - Malacari, M.
AU - Mallamaci, M.
AU - Maller, J.
AU - Mandat, D.
AU - Mantsch, P.
AU - Mariazzi, A. G.
AU - Marin, V.
AU - Maris, I. C.
AU - Marsella, G.
AU - Martello, D.
AU - Martinez, H.
AU - Martínez Bravo, O.
AU - Martraire, D.
AU - Masías Meza, J. J.
AU - Mathes, H. J.
AU - Mathys, S.
AU - Matthews, J.
AU - J. Matthews, J. A.
AU - Matthiae, G.
AU - Maurizio, D.
AU - Mayotte, E.
AU - Mazur, P. O.
AU - Medina, C.
AU - Medina-Tanco, G.
AU - Meissner, R.
AU - B. Mello, V. B.
AU - Melo, D.
AU - Menshikov, A.
AU - Messina, S.
AU - Micheletti, M. I.
AU - Middendorf, L.
AU - Minaya, I. A.
AU - Miramonti, L.
AU - Mitrica, B.
AU - Molina-Bueno, L.
AU - Mollerach, S.
AU - Montanet, F.
AU - Morello, C.
AU - Mostafá, M.
AU - Moura, C. A.
AU - Müller, G.
AU - Muller, M. A.
AU - Müller, S.
AU - Navas, S.
AU - Necesal, P.
AU - Nellen, L.
AU - Nelles, A.
AU - Neuser, J.
AU - Nguyen, P. H.
AU - Niculescu-Oglinzanu, M.
AU - Niechciol, M.
AU - Niemietz, L.
AU - Niggemann, T.
AU - Nitz, D.
AU - Nosek, D.
AU - Novotny, V.
AU - Nožka, L.
AU - Núñez, L. A.
AU - Ochilo, L.
AU - Oikonomou, F.
AU - Olinto, A.
AU - Pacheco, N.
AU - Pakk Selmi-Dei, D.
AU - Palatka, M.
AU - Pallotta, J.
AU - Papenbreer, P.
AU - Parente, G.
AU - Parra, A.
AU - Paul, T.
AU - Pech, M.
AU - Pękala, J.
AU - Pelayo, R.
AU - Pepe, I. M.
AU - Perrone, L.
AU - Petermann, E.
AU - Peters, C.
AU - Petrera, S.
AU - Petrov, Y.
AU - Phuntsok, J.
AU - Piegaia, R.
AU - Pierog, T.
AU - Pieroni, P.
AU - Pimenta, M.
AU - Pirronello, V.
AU - Platino, M.
AU - Plum, M.
AU - Porcelli, A.
AU - Porowski, C.
AU - Prado, R. R.
AU - Privitera, P.
AU - Prouza, M.
AU - Quel, E. J.
AU - Querchfeld, S.
AU - Quinn, S.
AU - Rautenberg, J.
AU - Ravel, O.
AU - Ravignani, D.
AU - Reinert, D.
AU - Revenu, B.
AU - Ridky, J.
AU - Risse, M.
AU - Ristori, P.
AU - Rizi, V.
AU - Rodrigues De Carvalho, W.
AU - Rodriguez Rojo, J.
AU - Rodríguez-Frías, M. D.
AU - Rogozin, D.
AU - Rosado, J.
AU - Roth, M.
AU - Roulet, E.
AU - Rovero, A. C.
AU - Saffi, S. J.
AU - Saftoiu, A.
AU - Salazar, H.
AU - Saleh, A.
AU - Salesa Greus, F.
AU - Salina, G.
AU - Sanabria Gomez, J. D.
AU - Sánchez, F.
AU - Sanchez-Lucas, P.
AU - Santos, E. M.
AU - Santos, E.
AU - Sarazin, F.
AU - Sarkar, B.
AU - Sarmento, R.
AU - Sarmiento-Cano, C.
AU - Sato, R.
AU - Scarso, C.
AU - Schauer, M.
AU - Scherini, V.
AU - Schieler, H.
AU - Schmidt, D.
AU - Scholten, O.
AU - Schoorlemmer, H.
AU - Schovánek, P.
AU - Schröder, F. G.
AU - Schulz, A.
AU - Schulz, J.
AU - Schumacher, J.
AU - Sciutto, S. J.
AU - Segreto, A.
AU - Settimo, M.
AU - Shadkam, A.
AU - Shellard, R. C.
AU - Sigl, G.
AU - Sima, O.
AU - Smialkowski, A.
AU - Šmída, R.
AU - Snow, G. R.
AU - Sommers, P.
AU - Sonntag, S.
AU - Sorokin, J.
AU - Squartini, R.
AU - Srivastava, Y. N.
AU - Stanca, D.
AU - Stanic, S.
AU - Stapleton, J.
AU - Stasielak, J.
AU - Stephan, M.
AU - Stutz, A.
AU - Suarez, F.
AU - Suarez Durán, M.
AU - Suomijärvi, T.
AU - Supanitsky, A. D.
AU - Sutherland, M. S.
AU - Swain, J.
AU - Szadkowski, Z.
AU - Taborda, O. A.
AU - Tapia, A.
AU - Tepe, A.
AU - Theodoro, V. M.
AU - Timmermans, C.
AU - Todero Peixoto, C. J.
AU - Toma, G.
AU - Tomankova, L.
AU - Tomé, B.
AU - Tonachini, A.
AU - Torralba Elipe, G.
AU - Torres Machado, D.
AU - Travnicek, P.
AU - Trini, M.
AU - Ulrich, R.
AU - Unger, M.
AU - Urban, M.
AU - Valdés Galicia, J. F.
AU - Valiño, I.
AU - Valore, L.
AU - Van Aar, G.
AU - Van Bodegom, P.
AU - Van Den Berg, A. M.
AU - Van Velzen, S.
AU - Van Vliet, A.
AU - Varela, E.
AU - Vargas Cárdenas, B.
AU - Varner, G.
AU - Vasquez, R.
AU - Vázquez, J. R.
AU - Vázquez, R. A.
AU - Veberic, D.
AU - Verzi, V.
AU - Vicha, J.
AU - Videla, M.
AU - Villaseñor, L.
AU - Vlcek, B.
AU - Vorobiov, S.
AU - Wahlberg, H.
AU - Wainberg, O.
AU - Walz, D.
AU - Watson, A. A.
AU - Weber, M.
AU - Weidenhaupt, K.
AU - Weindl, A.
AU - Werner, F.
AU - Widom, A.
AU - Wiencke, L.
AU - Wilczynski, H.
AU - Winchen, T.
AU - Wittkowski, D.
AU - Wundheiler, B.
AU - Wykes, S.
AU - Yang, L.
AU - Yapici, T.
AU - Yushkov, A.
AU - Zas, E.
AU - Zavrtanik, D.
AU - Zavrtanik, M.
AU - Zepeda, A.
AU - Zimmermann, B.
AU - Ziolkowski, M.
AU - Zuccarello, F.
N1 - Publisher Copyright: © 2016 IOP Publishing Ltd and Sissa Medialab srl.
PY - 2016/1/29
Y1 - 2016/1/29
N2 - To exploit the full potential of radio measurements of cosmic-ray air showers at MHz frequencies, a detector timing synchronization within 1 ns is needed. Large distributed radio detector arrays such as the Auger Engineering Radio Array (AERA) rely on timing via the Global Positioning System (GPS) for the synchronization of individual detector station clocks. Unfortunately, GPS timing is expected to have an accuracy no better than about 5 ns. In practice, in particular in AERA, the GPS clocks exhibit drifts on the order of tens of ns. We developed a technique to correct for the GPS drifts, and an independent method is used to cross-check that indeed we reach a nanosecond-scale timing accuracy by this correction. First, we operate a "beacon transmitter" which emits defined sine waves detected by AERA antennas recorded within the physics data. The relative phasing of these sine waves can be used to correct for GPS clock drifts. In addition to this, we observe radio pulses emitted by commercial airplanes, the position of which we determine in real time from Automatic Dependent Surveillance Broadcasts intercepted with a software-defined radio. From the known source location and the measured arrival times of the pulses we determine relative timing offsets between radio detector stations. We demonstrate with a combined analysis that the two methods give a consistent timing calibration with an accuracy of 2 ns or better. Consequently, the beacon method alone can be used in the future to continuously determine and correct for GPS clock drifts in each individual event measured by AERA.
AB - To exploit the full potential of radio measurements of cosmic-ray air showers at MHz frequencies, a detector timing synchronization within 1 ns is needed. Large distributed radio detector arrays such as the Auger Engineering Radio Array (AERA) rely on timing via the Global Positioning System (GPS) for the synchronization of individual detector station clocks. Unfortunately, GPS timing is expected to have an accuracy no better than about 5 ns. In practice, in particular in AERA, the GPS clocks exhibit drifts on the order of tens of ns. We developed a technique to correct for the GPS drifts, and an independent method is used to cross-check that indeed we reach a nanosecond-scale timing accuracy by this correction. First, we operate a "beacon transmitter" which emits defined sine waves detected by AERA antennas recorded within the physics data. The relative phasing of these sine waves can be used to correct for GPS clock drifts. In addition to this, we observe radio pulses emitted by commercial airplanes, the position of which we determine in real time from Automatic Dependent Surveillance Broadcasts intercepted with a software-defined radio. From the known source location and the measured arrival times of the pulses we determine relative timing offsets between radio detector stations. We demonstrate with a combined analysis that the two methods give a consistent timing calibration with an accuracy of 2 ns or better. Consequently, the beacon method alone can be used in the future to continuously determine and correct for GPS clock drifts in each individual event measured by AERA.
UR - http://www.scopus.com/inward/record.url?scp=84957933092&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84957933092&partnerID=8YFLogxK
U2 - 10.1088/1748-0221/11/01/P01018
DO - 10.1088/1748-0221/11/01/P01018
M3 - Article
AN - SCOPUS:84957933092
SN - 1748-0221
VL - 11
JO - Journal of Instrumentation
JF - Journal of Instrumentation
IS - 1
M1 - P01018
ER -