Nanotextured solar cells using aluminum as a catalyst and dopant

Mel Hainey, Chen Chen, Alyssa Brigeman, Noel Geibink, Marcie R. Black, Joan M. Redwing

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

A black silicon solar cell fabricated using aluminum as both a catalyst and dopant is demonstrated. A nanowire/nanopyramid black silicon surface texture is grown via aluminum (Al)-catalyzed vapor-liquid-solid growth, and post-growth annealing diffuses the aluminum into the n-type substrate, forming a p-n junction. Devices with nanopyramid surface textures are found to have higher short-circuit currents and open-circuit voltages than nanowire surface textures grown at lower temperatures, and post-growth annealing times of 15-30 minutes are found to promote higher short-circuit current densities. External quantum efficiency measurements show that the highest photoconversion occurs in the red and IR regions for all devices, with low quantum efficiencies at shorter wavelengths even when the p-type silicon surface is passivated with alumina. The quantum efficiency spectra imply that the devices are limited by recombination on the illuminated side of the device. Based on these results and previous data on Al-catalyzed wires and pyramids, excess Al incorporation and Al cluster formation in the emitter are suggested as the primary factors currently limiting device performance.

Original languageEnglish (US)
Title of host publication2016 IEEE 43rd Photovoltaic Specialists Conference, PVSC 2016
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages2896-2899
Number of pages4
ISBN (Electronic)9781509027248
DOIs
StatePublished - Nov 18 2016
Event43rd IEEE Photovoltaic Specialists Conference, PVSC 2016 - Portland, United States
Duration: Jun 5 2016Jun 10 2016

Publication series

NameConference Record of the IEEE Photovoltaic Specialists Conference
Volume2016-November
ISSN (Print)0160-8371

Other

Other43rd IEEE Photovoltaic Specialists Conference, PVSC 2016
Country/TerritoryUnited States
CityPortland
Period6/5/166/10/16

All Science Journal Classification (ASJC) codes

  • Control and Systems Engineering
  • Industrial and Manufacturing Engineering
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Nanotextured solar cells using aluminum as a catalyst and dopant'. Together they form a unique fingerprint.

Cite this