TY - JOUR
T1 - Nanowire-Mesh-Templated Growth of Out-of-Plane Three-Dimensional Fuzzy Graphene
AU - Garg, Raghav
AU - Rastogi, Sahil K.
AU - Lamparski, Michael
AU - De La Barrera, Sergio C.
AU - Pace, Gordon T.
AU - Nuhfer, Noel T.
AU - Hunt, Benjamin M.
AU - Meunier, Vincent
AU - Cohen-Karni, Tzahi
N1 - Publisher Copyright:
© 2017 American Chemical Society.
PY - 2017/6/27
Y1 - 2017/6/27
N2 - Graphene, a honeycomb sp2 hybridized carbon lattice, is a promising building block for hybrid-nanomaterials due to its electrical, mechanical, and optical properties. Graphene can be readily obtained through mechanical exfoliation, solution-based deposition of reduced graphene oxide (rGO), and chemical vapor deposition (CVD). The resulting graphene films' topology is two-dimensional (2D) surface. Recently, synthesis of three-dimensional (3D) graphitic networks supported or templated by nanoparticles, foams, and hydrogels was reported. However, the resulting graphene films lay flat on the surface, exposing 2D surface topology. Out-of-plane grown carbon nanostructures, such as vertically aligned graphene sheets (VAGS) and vertical carbon nanowalls (CNWs), are still tethered to 2D surface. 3D morphology of out-of-plane growth of graphene hybrid-nanomaterials which leverages graphene's outstanding surface-to-volume ratio has not been achieved to date. Here we demonstrate highly controlled synthesis of 3D out-of-plane single- to few-layer fuzzy graphene (3DFG) on a Si nanowire (SiNW) mesh template. By varying graphene growth conditions (CH4 partial pressure and process time), we control the size, density, and electrical properties of the NW templated 3DFG (NT-3DFG). 3DFG growth can be described by a diffusion-limited-aggregation (DLA) model. The porous NT-3DFG meshes exhibited high electrical conductivity of ca. 2350 S m-1. NT-3DFG demonstrated exceptional electrochemical functionality, with calculated specific electrochemical surface area as high as ca. 1017 m2 g-1 for a ca. 7 μm thick mesh. This flexible synthesis will inspire formation of complex hybrid-nanomaterials with tailored optical and electrical properties to be used in future applications such as sensing, and energy conversion and storage.
AB - Graphene, a honeycomb sp2 hybridized carbon lattice, is a promising building block for hybrid-nanomaterials due to its electrical, mechanical, and optical properties. Graphene can be readily obtained through mechanical exfoliation, solution-based deposition of reduced graphene oxide (rGO), and chemical vapor deposition (CVD). The resulting graphene films' topology is two-dimensional (2D) surface. Recently, synthesis of three-dimensional (3D) graphitic networks supported or templated by nanoparticles, foams, and hydrogels was reported. However, the resulting graphene films lay flat on the surface, exposing 2D surface topology. Out-of-plane grown carbon nanostructures, such as vertically aligned graphene sheets (VAGS) and vertical carbon nanowalls (CNWs), are still tethered to 2D surface. 3D morphology of out-of-plane growth of graphene hybrid-nanomaterials which leverages graphene's outstanding surface-to-volume ratio has not been achieved to date. Here we demonstrate highly controlled synthesis of 3D out-of-plane single- to few-layer fuzzy graphene (3DFG) on a Si nanowire (SiNW) mesh template. By varying graphene growth conditions (CH4 partial pressure and process time), we control the size, density, and electrical properties of the NW templated 3DFG (NT-3DFG). 3DFG growth can be described by a diffusion-limited-aggregation (DLA) model. The porous NT-3DFG meshes exhibited high electrical conductivity of ca. 2350 S m-1. NT-3DFG demonstrated exceptional electrochemical functionality, with calculated specific electrochemical surface area as high as ca. 1017 m2 g-1 for a ca. 7 μm thick mesh. This flexible synthesis will inspire formation of complex hybrid-nanomaterials with tailored optical and electrical properties to be used in future applications such as sensing, and energy conversion and storage.
UR - https://www.scopus.com/pages/publications/85021418155
UR - https://www.scopus.com/inward/citedby.url?scp=85021418155&partnerID=8YFLogxK
U2 - 10.1021/acsnano.7b02612
DO - 10.1021/acsnano.7b02612
M3 - Article
C2 - 28549215
AN - SCOPUS:85021418155
SN - 1936-0851
VL - 11
SP - 6301
EP - 6311
JO - ACS nano
JF - ACS nano
IS - 6
ER -